《倍數(shù)和因數(shù)》語文教后反思
《倍數(shù)和因數(shù)》教后反思1
今天這堂課其實是有點匆忙的。課前的一個小游戲忘了,忘了讓學(xué)生體會因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補上。
滿意的一點:模式的提練
在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯,馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。
不滿意的地方在于:對于找出36所有因數(shù)的有序思考沒有強調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時,許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進行比較。
如:1、36、2、18、3、12、4、9、6
1、2、3、4、6、9、12、18、36
和36÷1=36,36÷2=18,36÷3=12
。常丁拢矗剑,36÷6=6
尤其是最后一種方法,我特別注意讓學(xué)生評價一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數(shù)的提取,由此過渡到評價第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們在比較中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機在這一步讓學(xué)生體會尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補充習(xí)題上出現(xiàn)了問題,我抓了幾個學(xué)生問為什么強調(diào)有序性,學(xué)生告訴我:因為可以看得清楚,因為不會遺漏。看起來班上的學(xué)生有這方面的意識,在做題目的時候還應(yīng)該再稍稍提點一下,應(yīng)該也就不成問題了。
《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思2
昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會說,但到了家自己做家作時,問題很多。今天進行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對昨天的內(nèi)容進行了復(fù)習(xí)。讓學(xué)生進一步明確:
1、講因數(shù)和倍數(shù)時應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。
2、找一個數(shù)的倍數(shù)和因數(shù)時,倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。
學(xué)生書上練習(xí)時,提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個,要盡可能把這些數(shù)都找出來。但學(xué)生有時找不全,我就教會學(xué)生這樣思考:找一個數(shù)的倍數(shù)時用乘法,找一個數(shù)的因數(shù)時用除法。效果還可以。
今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會找一個數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。
存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)。”后讓學(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的',可是在分層練習(xí)時再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時,又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念?磥黹_始的復(fù)述學(xué)生純粹是無意識的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會理解只要是兩個整數(shù)相乘等于12,12就是這兩個整數(shù)的倍數(shù),這兩個整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。
滿意之處:學(xué)生在找一個數(shù)的因數(shù)和倍數(shù)時花費的時間不多,但在交流方法時我舍得花費較多的時間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。
【《倍數(shù)和因數(shù)》語文教后反思】相關(guān)文章:
《因數(shù)和倍數(shù)》的說課稿(精選5篇)08-27
小學(xué)五年級下冊《因數(shù)和倍數(shù) 》課件09-27
將相和語文教后反思06-26
《獅子和鹿》小學(xué)語文教后反思06-27
《小松樹和大松樹》語文教后反思06-27
《牧童》語文教后反思06-27
詠華山語文教后反思02-03
臥薪嘗膽語文教后反思02-03
說勤奮語文教后反思02-03