久久综合国产中文字幕,伊人久久大香线蕉一区,夜色福利少妇专区,亚洲日本va中文字带亚洲

    我要投稿 投訴建議

    抽屜原理教學(xué)設(shè)計(jì)

    時(shí)間:2024-11-01 14:41:05 教學(xué)設(shè)計(jì) 我要投稿

    抽屜原理教學(xué)設(shè)計(jì)

      在教學(xué)工作者開展教學(xué)活動(dòng)前,時(shí)常需要準(zhǔn)備好教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。教學(xué)設(shè)計(jì)要怎么寫呢?下面是小編整理的抽屜原理教學(xué)設(shè)計(jì),僅供參考,希望能夠幫助到大家。

    抽屜原理教學(xué)設(shè)計(jì)

    抽屜原理教學(xué)設(shè)計(jì)1

      教學(xué)目標(biāo):

      1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

      2、通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      教學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教學(xué)過程

      一、 游戲引入

      3個(gè)人坐兩個(gè)座位,3人都要坐下,一定有一個(gè)座位上至少坐了2個(gè)人。

      這其中蘊(yùn)含了有趣的數(shù)學(xué)原理,這節(jié)課我們一起學(xué)習(xí)研究。

      二、新知探究

      1、把4枝鉛筆放進(jìn)3個(gè)文具盒里,不管怎么放,總有一個(gè)文具盒里至少放進(jìn)()枝鉛筆先猜一猜,再動(dòng)手放一放,看看有哪些不同方法。用自己的方法記錄(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么發(fā)現(xiàn)?

      不管怎么放總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。總有是什么意思?至少是什么意思2、思考

      有沒有一種方法不用擺放就可以知道至少數(shù)是多少呢?

      1、3人坐2個(gè)位子,總有一個(gè)座位上至少坐了2個(gè)人2、4枝鉛筆放進(jìn)3個(gè)文具盒中,總有一個(gè)文具盒中至少放了2枝鉛筆5枝鉛筆放進(jìn)4個(gè)文具盒中,6枝鉛筆放進(jìn)5個(gè)文具盒中。

      99支鉛筆放進(jìn)98個(gè)文具盒中。

      是否都有一個(gè)文具盒中

      至少放進(jìn)2枝鉛筆呢?

      這是為什么?可以用算式表達(dá)嗎?

      4、如果是5枝鉛筆放到3個(gè)文具盒里,總有一個(gè)文具盒至少放進(jìn)幾枝鉛筆?把7支筆放進(jìn)2個(gè)文具盒里呢?

      8枝筆放進(jìn)2個(gè)文具盒呢?

      9枝筆放進(jìn)3個(gè)文具盒呢?至少數(shù)=上+余數(shù)嗎?

      三、小試牛刀

      1、7只鴿子飛回5個(gè)鴿舍,至少有幾只鴿子要飛進(jìn)同一個(gè)鴿舍里?2、從撲克牌中取出兩張王牌,在剩下的'52張中任意抽出5張,至少有幾張是同花色的?四、數(shù)學(xué)小知識(shí)

      數(shù)學(xué)小知識(shí):抽屜原理的由來最先發(fā)現(xiàn)這些規(guī)律的人是誰呢?最先是由19世紀(jì)的德國數(shù)學(xué)家狄里克雷運(yùn)用于解決數(shù)學(xué)問題的,后人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鴿巢原理”,還把它叫做“抽屜原理”。五、智慧城堡

      1、把13只小兔子關(guān)在5個(gè)籠子里,至少有多少只兔子要關(guān)在同一個(gè)籠子里?2、咱們班共59人,至少有幾人是同一屬相?3、張叔叔參加飛鏢比賽,投了5鏢,鏢鏢都中,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?4、六年級(jí)四個(gè)班的學(xué)生去春游,自由活時(shí)有6個(gè)同學(xué)在一起,可以肯定。

      為什么?六、小結(jié)

      這節(jié)課你有什么收獲?

      七、作業(yè):課后練習(xí)

    抽屜原理教學(xué)設(shè)計(jì)2

      教學(xué)目標(biāo)

      1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

      2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      教學(xué)重、難點(diǎn)

      經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教學(xué)過程

      一、問題引入。

      師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來,誰愿來?

      1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

      2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對(duì)嗎?

      游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

      引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。

      二、探究新知

      (一)教學(xué)例1

      1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

      師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

      板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

      問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

      引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

      問題:

     。1)“總有”是什么意思?(一定有)

     。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

      教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

      學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

      問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

      總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

      2.完成課下“做一做”,學(xué)習(xí)解決問題。

      問題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

      (1)學(xué)生活動(dòng)—獨(dú)立思考自主探究

     。2)交流、說理活動(dòng)。

      引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

      總結(jié):用平均分的方法,就能說明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

     。ǘ┙虒W(xué)例2

      1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

     。艚o學(xué)生思考的空間,師巡視了解各種情況)

      2.學(xué)生匯報(bào),教師給予表揚(yáng)后并總結(jié):

      總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

      總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

      問題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)

      引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對(duì)呢?(學(xué)生小組里進(jìn)行研究、討論。)

      總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

      師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的.德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

     。ㄈ⿲W(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場(chǎng)景。

      三、解決問題

      四、全課小結(jié)

    抽屜原理教學(xué)設(shè)計(jì)3

      一、教學(xué)內(nèi)容

      這一冊(cè)教材包括下面一些內(nèi)容:負(fù)數(shù)、圓柱與圓錐、比例、統(tǒng)計(jì)、數(shù)學(xué)廣角、整理和復(fù)習(xí)等。

      教學(xué)重點(diǎn):百分?jǐn)?shù)的應(yīng)用、圓柱的側(cè)面積和表面積的計(jì)算方法、圓柱和圓錐的體積計(jì)算方法、比例的意義和基本性質(zhì)、正比例和反比例、扇形統(tǒng)計(jì)圖、轉(zhuǎn)化的解題策略以及總復(fù)習(xí)的四個(gè)板塊的系列內(nèi)容。

      教學(xué)難點(diǎn):圓柱和圓錐體積計(jì)算方法的推導(dǎo)、成正比例和反比例量的判斷、用方向和距離確定位置、眾數(shù)和中位數(shù)平均數(shù)、解題策略的靈活運(yùn)用。

      二、教學(xué)目標(biāo)

      這一冊(cè)教材的教學(xué)目標(biāo)是讓學(xué)生:

      1、了解負(fù)數(shù)的意義,會(huì)用負(fù)數(shù)表示一些日常生活中的問題。

      2、理解比例的意義和基本性質(zhì),會(huì)解比例,理解正比例和反比例的意義,能夠判斷兩種量是否成正比例或反比例,會(huì)用比例知識(shí)解決比較簡單的實(shí)際問題;能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標(biāo)系的方格紙上畫圖,并能根據(jù)其中一個(gè)量的值估計(jì)另一個(gè)量的值。

      3、會(huì)看比例尺,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小。

      4、認(rèn)識(shí)圓柱、圓錐的特征,會(huì)計(jì)算圓柱的表面積和圓柱、圓錐的體積。

      5、能從統(tǒng)計(jì)圖表準(zhǔn)確提取統(tǒng)計(jì)信息,正確解釋統(tǒng)計(jì)結(jié)果,并能作出正確的判斷或簡單的'預(yù)測(cè);初步體會(huì)數(shù)據(jù)可能產(chǎn)生誤導(dǎo)。

      6、經(jīng)歷從實(shí)際生活中發(fā)現(xiàn)問題、提出問題、解決問題的過程,體會(huì)數(shù)學(xué)在日常生活中的作用,初步形成綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。

      7、經(jīng)歷對(duì)“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題,發(fā)展分析、推理的能力。

      8、通過系統(tǒng)的整理和復(fù)習(xí),加深對(duì)小學(xué)階段所學(xué)的數(shù)學(xué)知識(shí)的理解和掌握,形成比較合理的、靈活的計(jì)算能力,發(fā)展思維能力和空間觀念,提高綜合運(yùn)用所學(xué)數(shù)學(xué)知識(shí)解決問題的能力。

      9、體會(huì)學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

      10、養(yǎng)成認(rèn)真作業(yè)、書寫整潔的良好習(xí)慣。

      三、教材分析

      在數(shù)與代數(shù)方面,這一冊(cè)教材安排了負(fù)數(shù)和比例兩個(gè)單元。結(jié)合生活實(shí)例使學(xué)生初步認(rèn)識(shí)負(fù)數(shù),了解負(fù)數(shù)在實(shí)際生活中的應(yīng)用。比例的教學(xué),使學(xué)生理解比例、正比例和反比例的概念,會(huì)解比例和用比例知識(shí)解決問題。

      在空間與圖形方面,這一冊(cè)教材安排了圓柱與圓錐的教學(xué),在已有知識(shí)和經(jīng)驗(yàn)的基礎(chǔ)上,使學(xué)生通過對(duì)圓柱、圓錐特征和有關(guān)知識(shí)的探索與學(xué)習(xí),掌握有關(guān)圓柱表面積,圓柱、圓錐體積計(jì)算的基本方法,促進(jìn)空間觀念的進(jìn)一步發(fā)展。

      在統(tǒng)計(jì)方面,本冊(cè)教材安排了有關(guān)數(shù)據(jù)可能產(chǎn)生誤導(dǎo)的內(nèi)容。通過簡單事例,使學(xué)生認(rèn)識(shí)到利用統(tǒng)計(jì)圖表雖便于作出判斷或預(yù)測(cè),但如不認(rèn)真分析也有可能獲得不準(zhǔn)確的信息導(dǎo)致錯(cuò)誤判斷或預(yù)測(cè),明確對(duì)統(tǒng)計(jì)數(shù)據(jù)進(jìn)行認(rèn)真、客觀、全面的分析的重要性。

      在用數(shù)學(xué)解決問題方面,教材一方面結(jié)合圓柱與圓錐、比例、統(tǒng)計(jì)等知識(shí)的學(xué)習(xí),教學(xué)用所學(xué)的知識(shí)解決生活中的簡單問題;另一方面安排了“數(shù)學(xué)廣角”的教學(xué)內(nèi)容,引導(dǎo)學(xué)生通過觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng),經(jīng)歷探究“抽屜原理”的過程,體會(huì)如何對(duì)一些簡單的實(shí)際問題“模型化”,從而學(xué)習(xí)用“抽屜原理”加以解決,感受數(shù)學(xué)的魅力,發(fā)展學(xué)生解決問題的能力。

      本冊(cè)教材根據(jù)學(xué)生所學(xué)習(xí)的數(shù)學(xué)知識(shí)和生活經(jīng)驗(yàn),安排了多個(gè)數(shù)學(xué)綜合應(yīng)用的實(shí)踐活動(dòng),讓學(xué)生通過小組合作的探究活動(dòng)或有現(xiàn)實(shí)背景的活動(dòng),運(yùn)用所學(xué)知識(shí)解決問題,體會(huì)探索的樂趣和數(shù)學(xué)的實(shí)際應(yīng)用,感受用數(shù)學(xué)的愉悅,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和實(shí)踐能力。

      整理和復(fù)習(xí)單元是在完成小學(xué)數(shù)學(xué)的全部教學(xué)內(nèi)容之后,引導(dǎo)學(xué)生對(duì)所學(xué)內(nèi)容進(jìn)行一次系統(tǒng)的、全面的回顧與整理,這是小學(xué)數(shù)學(xué)教學(xué)的一個(gè)重要環(huán)節(jié)。通過整理和復(fù)習(xí),使原來分散學(xué)習(xí)的知識(shí)得以梳理,由數(shù)學(xué)的知識(shí)點(diǎn)串成知識(shí)線,由知識(shí)線構(gòu)成知識(shí)網(wǎng),從而幫助學(xué)生完善頭腦中的數(shù)學(xué)認(rèn)知結(jié)構(gòu),為初中的數(shù)學(xué)學(xué)習(xí)打下良好的基礎(chǔ);同時(shí)進(jìn)一步提高學(xué)生綜合運(yùn)用所學(xué)知識(shí)分析問題和解決問題的能力。

      四、學(xué)情分析

      本班共有學(xué)生29人,大部分學(xué)生對(duì)數(shù)學(xué)有上進(jìn)心;有些學(xué)生的學(xué)習(xí)態(tài)度還需不斷端正;有部分學(xué)生自覺性不夠,上課注意力不集中;不能及時(shí)完成作業(yè)等;還有個(gè)別學(xué)生(胡志強(qiáng)、裴玉琴、陳建宏)基礎(chǔ)知識(shí)掌握不夠扎實(shí),學(xué)習(xí)數(shù)學(xué)有很大困難。所以在新的學(xué)期里,在端正學(xué)生學(xué)習(xí)態(tài)度的同時(shí),應(yīng)加強(qiáng)培養(yǎng)他們的各種學(xué)習(xí)數(shù)學(xué)的能力,利用小組討論的學(xué)習(xí)方式,使學(xué)生在討論中人人參與,各抒己見,互相啟發(fā), 自己找出解決問題的方法,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂。

      五、教學(xué)方法:

      教學(xué)方法:

      1、創(chuàng)設(shè)愉悅的教學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)的興趣。提倡學(xué)法的多樣性,關(guān)注學(xué)生的個(gè)人體驗(yàn)。

      2、在集體備課基礎(chǔ)上,還應(yīng)同年級(jí)老師交換聽課,及時(shí)反思,真正領(lǐng)會(huì)教學(xué)設(shè)計(jì)意圖,提高駕御課堂的能力。教師應(yīng)轉(zhuǎn)變觀念,采用“激勵(lì)性、自主性、創(chuàng)造性”教學(xué)策略,以問題為線索,恰當(dāng)運(yùn)用教材、媒體、現(xiàn)實(shí)材料突破重點(diǎn)、難點(diǎn),變多講多練,為精講精練,真正實(shí)現(xiàn)師生互動(dòng)、生生互動(dòng),從而調(diào)動(dòng)學(xué)生積極主動(dòng)學(xué)習(xí),提高教與學(xué)的效益。

      3、不增減課程和課時(shí),不提高要求,不購買其他復(fù)習(xí)資料,不留機(jī)械、重復(fù)、懲罰性作業(yè)和作業(yè)總量不超過規(guī)定時(shí)間,課堂訓(xùn)練形式的多樣化,重視一題多解,從不同角度解決問題。

      4、加強(qiáng)基礎(chǔ)知識(shí)的教學(xué),使學(xué)生切實(shí)掌握好這些基礎(chǔ)知識(shí)。本學(xué)期要以新的教學(xué)理念,為學(xué)生的持續(xù)發(fā)展提供豐富的教學(xué)資源和空間。要充分發(fā)揮教材的優(yōu)勢(shì),在教學(xué)過程中,密切數(shù)學(xué)與生活的聯(lián)系,確立學(xué)生在學(xué)習(xí)中的主體地位,創(chuàng)設(shè)愉悅、開放式的教學(xué)情境,使學(xué)生在愉悅、開放式的教學(xué)情境中滿足個(gè)性化學(xué)習(xí)需求,從而達(dá)到掌握基礎(chǔ)知識(shí)基本技能,培養(yǎng)學(xué)生創(chuàng)新意識(shí)和實(shí)踐能力的目的。

      5、在教學(xué)中注意采用開放式教學(xué),培養(yǎng)學(xué)生根據(jù)具體情境選擇適當(dāng)方法解決實(shí)際問題的意識(shí)。如通過一題多解、一題多變、一題多問、一題多編等途徑,拓寬學(xué)生的知識(shí)面,溝通知識(shí)之間的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的應(yīng)變能力。

      6、練習(xí)的安排,要由淺入深,體現(xiàn)層次性。對(duì)優(yōu)生、學(xué)困生都要體現(xiàn)有所指導(dǎo)。增強(qiáng)數(shù)學(xué)實(shí)踐活動(dòng),讓學(xué)生認(rèn)識(shí)數(shù)學(xué)知識(shí)與實(shí)際生活的關(guān)系,使學(xué)生感到生活中時(shí)時(shí)處處有數(shù)學(xué),用數(shù)學(xué)的實(shí)際意義來誘發(fā)和培養(yǎng)學(xué)生熱愛數(shù)學(xué)的情感。

    抽屜原理教學(xué)設(shè)計(jì)4

      一、說教材

      1、教學(xué)內(nèi)容:我說課的內(nèi)容是人教版六年級(jí)數(shù)學(xué)下冊(cè)數(shù)學(xué)廣角《抽屜原理》第一課時(shí),也就是教材70-71頁的例1和例2.

      2、教材地位及作用及學(xué)情分析

      本單元用直觀的方法,介紹了“抽屜原理”的兩種形式,并安排了很多具體問題和變式,幫助學(xué)生通過“說理”的方式來理解“抽屜原理”,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。

      教材中,有三處孩子們不好理解的地方:1)“總有一個(gè)”、“至少”這兩個(gè)關(guān)鍵詞的解讀;2)為了達(dá)到“至少”而進(jìn)行“平均分”的思路,3)把什么看做物體,把什么看做抽屜,這樣一個(gè)數(shù)學(xué)模型的建立。六年級(jí)的學(xué)生對(duì)于總結(jié)規(guī)律的方法接觸比較少,尤其對(duì)于“數(shù)學(xué)證明”。于是我安排通過例1的直觀操作教學(xué),及例2的適當(dāng)抽象建模,讓全體學(xué)生真實(shí)地經(jīng)歷“抽屜原理”的探究過程,把他們?cè)趯W(xué)習(xí)中可能會(huì)遇到的幾個(gè)困難,弄懂、弄通,建立清晰的基本概念、思路、方法。

      3、本節(jié)課的教學(xué)目標(biāo)

      根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:

      知識(shí)性目標(biāo):初步了解抽屜原理,會(huì)用抽屜原理解決簡單的實(shí)際問題。

      能力性目標(biāo):經(jīng)歷抽屜原理的探究過程,通過實(shí)踐操作,發(fā)現(xiàn)、歸納、總結(jié)原理。

      情感性目標(biāo):通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)的魅力。

      4、教學(xué)重、難點(diǎn)的確定

      教學(xué)重點(diǎn):經(jīng)歷抽屜原理的探究過程,發(fā)現(xiàn)、總結(jié)并理解抽屜原理。

      教學(xué)難點(diǎn):理解抽屜原理中“至少”的含義,并會(huì)用抽屜原理解決實(shí)際問題。

      二、說教法、學(xué)法

      六年級(jí)學(xué)生既好動(dòng)又內(nèi)斂,于是教法上本節(jié)課主要采用了設(shè)疑激趣法、講授法、實(shí)踐操作法。課堂始終以設(shè)疑及觀察思考討論貫穿于整個(gè)教學(xué)環(huán)節(jié)中,采用師生互動(dòng)的教學(xué)模式進(jìn)行啟發(fā)式教學(xué)。學(xué)法上主要采用了自主合作、探究交流的學(xué)習(xí)方式。體現(xiàn)數(shù)學(xué)知識(shí)的形成過程,感受數(shù)學(xué)學(xué)習(xí)的樂趣。

      三、說教學(xué)過程:

      一、游戲激趣,初步體驗(yàn)。

      師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了2把椅子,請(qǐng)3個(gè)同學(xué)上來,誰愿來?

      1.游戲要求:你們3位同學(xué)圍著椅子走動(dòng),等音樂定下來后請(qǐng)你們3個(gè)都坐在椅子上,每個(gè)人必須都坐下。

      2.師:老師不用看就知道總有一把椅子上至少坐著兩名同學(xué),是這樣的嗎?如果不相信咱們?cè)僮鲆淮,好不好?/p>

      引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。設(shè)計(jì)意圖:第一次與學(xué)生接觸,在課前進(jìn)行的游戲激趣,一使教師和學(xué)生進(jìn)行自然的溝通交流;二激發(fā)學(xué)生的興趣,引起探究的`愿望;三為今天的探究埋下伏筆。

      二、操作探究,發(fā)現(xiàn)規(guī)律。

      1、提出問題:把4支鉛筆放進(jìn)3個(gè)文具盒中,不管怎么放,總有一個(gè)文具盒至少放進(jìn) 支鉛筆。讓學(xué)生猜測(cè)“至少會(huì)是”幾支?

      2、驗(yàn)證結(jié)論:不管學(xué)生猜測(cè)的結(jié)論是什么,都要求學(xué)生借助實(shí)物進(jìn)行操作,來驗(yàn)證結(jié)論。學(xué)生以小組為單位進(jìn)行操作和交流時(shí),教師深入了解學(xué)生操作情況,找出列舉所有情況的學(xué)生。

      (1)先請(qǐng)列舉所有情況的學(xué)生進(jìn)行匯報(bào),一說明列舉的不同情況,二結(jié)合操作說明自己的結(jié)論。(教師根據(jù)學(xué)生的回答板書所有的情況)

      學(xué)生匯報(bào)完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支鉛筆被放進(jìn)了同一個(gè)文具盒。

      設(shè)計(jì)意圖:抽屜原理對(duì)于學(xué)生來說,比較抽象,特別是“總有一個(gè)文具盒中至少放進(jìn)2支鉛筆”這句話的理解。所以通過具體的操作,列舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的文具盒,理解“總有一個(gè)文具盒”以及“至少2支”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力。

     。2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個(gè)結(jié)論嗎?

      學(xué)生匯報(bào)了自己的方法后,教師圍繞假設(shè)法,組織學(xué)生展開討論:為什么每個(gè)文具盒里都要放1支鉛筆呢?請(qǐng)相互之間討論一下。

      在討論的基礎(chǔ)上,教師小結(jié):假如每個(gè)文具盒放入一支鉛筆,剩下的一支還要放進(jìn)一個(gè)文具盒,無論放在哪個(gè)文具盒里,一定能找到一個(gè)文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。

      設(shè)計(jì)意圖:鼓勵(lì)學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識(shí)到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。

     。3)初步觀察規(guī)律。

      教師繼續(xù)提問:6支鉛筆放進(jìn)5個(gè)文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進(jìn)6個(gè)文具盒里呢?100支鉛筆放進(jìn)99個(gè)文具盒呢?你發(fā)現(xiàn)了什么?

      設(shè)計(jì)意圖:讓學(xué)生在這個(gè)連續(xù)的過程中初步感知方法的優(yōu)劣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3、運(yùn)用抽屜原理解決問題。

      出示第70頁做一做,讓學(xué)生運(yùn)用簡單的抽屜原理解決問題。在說理的過程中重點(diǎn)關(guān)注“余下的2只鴿子”如何分配?

      設(shè)計(jì)意圖:從余數(shù)1到余數(shù)2,讓學(xué)生再次體會(huì)要保證“至少”必須盡量平均分,余下的數(shù)也要進(jìn)行二次平均分。

      4、發(fā)現(xiàn)規(guī)律,初步建模。

      我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語言描述,只要大概意思正確即可)

      小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個(gè)抽屜至少放進(jìn)2個(gè)物體。這就叫做抽屜原理,F(xiàn)在你能解釋為什么老師肯定前兩排的同學(xué)中至少有2人的生日是同一個(gè)月份嗎?

      設(shè)計(jì)意圖:通過對(duì)不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發(fā)現(xiàn)簡單的抽屜原理。研究的問題來源于生活,還要還原到生活中去,所以請(qǐng)學(xué)生對(duì)課前的游戲的解釋,也是一個(gè)建模的過程,讓學(xué)生體會(huì)“抽屜”不一定是看得見,摸得著。

      5、用有余數(shù)的除法算式表示假設(shè)法的思維過程。

     。1)教學(xué)例2,可以出示問題后,讓學(xué)生說理,然后問:這個(gè)思考過程可以用算式表示出來嗎?

     。2)做一做:8只鴿子飛回3個(gè)鴿舍,至少有3支鴿子飛進(jìn)同一個(gè)鴿舍。為什么?

      設(shè)計(jì)意圖:在例1和做一做的基礎(chǔ)上,相信學(xué)生會(huì)用平均分的方法解決“至少”的問題,將證明過程用有余數(shù)的除法算式表示,為下一步,學(xué)生發(fā)現(xiàn)結(jié)論與商和余數(shù)的關(guān)系做好鋪墊。

      三、鞏固練習(xí)。

      撲克牌游戲

     、賻熍c生配合做

      教師洗牌學(xué)生抽其中的任意5張,教師猜其中至少有2張是同花色的。

      ②學(xué)生做游戲

      要求探尋規(guī)律并說明理由。

      設(shè)計(jì)意圖:用游戲的形式激發(fā)學(xué)生的興趣,用抽屜原理解決具體問題進(jìn)行建模,讓學(xué)生體會(huì)抽屜的形式是多種多樣的。

      四、小結(jié)全課,激發(fā)熱情

      1、今天的你有什么收獲?

      我們將鉛筆、鴿子、撲克看做物體數(shù),文具盒、鴿舍、四種花色看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語言描述,只要大概意思正確即可)

      小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個(gè)抽屜至少放進(jìn)2個(gè)物體。這就叫做抽屜原理。

      2、介紹課外知識(shí)。

      介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學(xué)家狄里克雷。

      設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。

    抽屜原理教學(xué)設(shè)計(jì)5

      【知識(shí)技能】

      1.理解最簡單的抽屜原理及抽屜原理的一般形式。

      2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。

      【過程方法】

      經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

      【情感態(tài)度價(jià)值觀】

      體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)和能力。

      【教學(xué)重、難點(diǎn)】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      【教學(xué)過程】

      一、問題引入。

      師:同學(xué)們,你們玩過搶椅子的.游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來,誰愿來?

      1.游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

      2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對(duì)嗎?

      游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

      引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。

      二、探究新知

     。ㄒ唬┙虒W(xué)例1

      1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

      師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

      板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

      問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

      引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

      問題:

     。1)“總有”是什么意思?(一定有)

     。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

      教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

      學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

      問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

    抽屜原理教學(xué)設(shè)計(jì)6

      教學(xué)內(nèi)容:

      教科書第68、69頁例1、2。

      教學(xué)目標(biāo):

      1、使學(xué)生經(jīng)歷將一些實(shí)際問題抽象為代數(shù)問題的過程,并能運(yùn)用所學(xué)知識(shí)解決有關(guān)實(shí)際問題。

      2、能與他人交流思維過程和結(jié)果,并學(xué)會(huì)有條理地、清晰地闡述自己的觀點(diǎn)。

      教學(xué)重點(diǎn):分配方法。

      教學(xué)難點(diǎn):分配方法。

      教學(xué)方法:列舉法 分析法

      學(xué)習(xí)方法:嘗試法 自主探究法

      教學(xué)用具:課件

      教學(xué)過程:

      一、 定向?qū)W(xué)(3分)

      (一)游戲引入

      師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請(qǐng)4個(gè)同學(xué)上來,誰愿來?

      1、游戲要求:開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

      2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對(duì)嗎?

      游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

      引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。

      (二)揭示目標(biāo)

      理解并掌握解決鴿巢問題的解答方法。

      二、 自主學(xué)習(xí)(8分)

      1、看書68頁,閱讀例1:把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?

     。1)理解“總有”和“至少”的意思。

     。2)理解4種放法。

      2、全班同學(xué)交流思維的過程和結(jié)果。

      3、跟蹤練習(xí)。

      68頁做一做:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

      (1)說出想法。

      如果每個(gè)鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的一個(gè)鴿舍或分別飛進(jìn)其中的兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。

     。2)嘗試分析有幾種情況。

      (3)說一說你有什么體會(huì)。

      三、合作交流(8)

      1、出示例2

      把7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?(1)合作交流有幾種放法。

      不難得出,總有一個(gè)抽屜至少放進(jìn)3本。

     。2)指名說一說思維過程。

      如果每個(gè)抽屜放2本,放了6本書。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書。

      2、如果一共有8本書會(huì)怎樣呢10本呢?

      3、你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?

      7÷3=2……1 (至少放3本)

      8÷3=2……2 (至少放4本)

      10÷3=3……1 (至少放5本)

      4、做一做

      11只鴿子飛回4個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

      四、質(zhì)疑探究(5分)

      1、鴿巢問題怎樣求?

      小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個(gè)抽屜至少放進(jìn)的本數(shù)。

      2、做一做。

      69頁做一做2題。

      五、小結(jié)檢測(cè)(10)

     。ㄒ唬┬〗Y(jié)

      鴿巢問題的解答方法是什么?

      物體的`數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。

      (二)檢測(cè)

      1、填空

      ( 1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有( )只鴿子要飛進(jìn)同伴的鴿舍里。

     。 2)有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放( )本書。

      (3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有( )人是同一月出生的。 4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是( )數(shù)。

      2、選擇

      (1)5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。 a、60 b、61 c、62 d、59

      (2)3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于( )元。 a、3 b、4 c、5 d、無法確定

      3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個(gè)小朋友,結(jié)果是什么?

      六、作業(yè) (6分)

      完成課本練習(xí)十二第2、4題。

      板書

      抽屜原理

      物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜至少放進(jìn)(商+1)物體。

    抽屜原理教學(xué)設(shè)計(jì)7

      【教學(xué)內(nèi)容】

      《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》六年級(jí)下冊(cè)第68頁。

      【教學(xué)目標(biāo)】

      1.經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理,會(huì)用抽屜原理解決簡單的實(shí)際問題。

      2. 通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3. 通過抽屜原理的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      【教學(xué)重點(diǎn)】

      經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

      【教學(xué)難點(diǎn)】

      理解抽屜原理,并對(duì)一些簡單實(shí)際問題加以模型化。

      【教具、學(xué)具準(zhǔn)備】

      每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。

      【教學(xué)過程】

      一、課前游戲引入。

      師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰愿來?(學(xué)生上來后)

      師:聽清要求 ,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

      師:開始。

      師:都坐下了嗎?

      生:坐下了。

      師:我沒有看到他們坐的情況,但是我敢肯定地說:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)我說得對(duì)嗎?

      生:對(duì)!

      師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。下面我們開始上課,可以嗎?

      【點(diǎn)評(píng)】教師從學(xué)生熟悉的搶椅子游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,為后面開展教與學(xué)的活動(dòng)做了鋪墊。

      二、通過操作,探究新知

      (一)教學(xué)例1

      1.出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?

      師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況 (3,0) (2,1)

      【點(diǎn)評(píng)】此處設(shè)計(jì)教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極參與進(jìn)來。

      師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?

      生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

      是:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

      師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

      師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

      (4,0,0)

      (3,1,0)

      (2,2,0)

      (2,1,1),

      師:還有不同的放法嗎?

      生:沒有了。

      師:你能發(fā)現(xiàn)什么?

      生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:總有是什么意思?

      生:一定有

      師:至少有2枝什么意思?

      生:不少于兩只,可能是2枝,也可能是多于2枝?

      師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)

      師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?

      學(xué)生思考組內(nèi)交流匯報(bào)

      師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

      組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

      師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)

      師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

      師:這種分法,實(shí)際就是先怎么分的?

      生眾:平均分

      師:為什么要先平均分?(組織學(xué)生討論)

      生1:要想發(fā)現(xiàn)存在著總有一個(gè)盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)總有一個(gè)盒子里一定至少有2枝。

      生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

      師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說一說)

      師:哪位同學(xué)能把你的想法匯報(bào)一下,

      生:(一邊演示一邊說)5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

      生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:把7枝筆放進(jìn)6個(gè)盒子里呢?

      把8枝筆放進(jìn)7個(gè)盒子里呢?

      把9枝筆放進(jìn)8個(gè)盒子里呢?

     。

      你發(fā)現(xiàn)什么?

      生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

      【點(diǎn)評(píng)】教師關(guān)注了抽屜原理的最基本原理,物體個(gè)數(shù)必須要多于抽屜個(gè)數(shù),化繁為簡,此處確實(shí)有必要提領(lǐng)出來進(jìn)行教學(xué)。在學(xué)生自主探索的基礎(chǔ)上,教師注意引導(dǎo)學(xué)生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。通過教師組織開展的扎實(shí)有效的教學(xué)活動(dòng),學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      2.解決問題。

      (1)課件出示:5只鴿子飛回4個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

      (學(xué)生活動(dòng)獨(dú)立思考 自主探究)

      (2)交流、說理活動(dòng)。

      師:誰能說說為什么?

      生1:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。

      生2:我們也是這樣想的。

      生3:把5只鴿子平均分到4個(gè)籠子里,每個(gè)籠子1只,剩下1只,放到任何一個(gè)籠子里,就能保證至少有2只鴿子飛進(jìn)同一個(gè)籠里。

      生4:可以用54=11,余下的1只,飛到任何一個(gè)鴿籠里都能保證至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里,所以,至少有2只鴿子飛進(jìn)同一個(gè)籠里的.結(jié)論是正確的。

      師:許多同學(xué)沒有再擺學(xué)具,證明這個(gè)結(jié)論是正確的,用的什么方法?

      生:用平均分的方法,就能說明存在總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里。

      師:同意嗎?(生:同意)老師把這位同學(xué)說的算式寫下來,(板書:54=11)

      師:同位之間再說一說,對(duì)這種方法的理解。

      師:現(xiàn)在誰能說說你對(duì)總有一個(gè)鴿籠里至少飛進(jìn)2只鴿子的理解

      生:我們發(fā)現(xiàn)這是必然存在的一個(gè)現(xiàn)象,不管鴿子怎樣飛回鴿籠,一定會(huì)有一個(gè)鴿籠里至少有2只鴿子。

      師:同學(xué)們都有這個(gè)發(fā)現(xiàn)嗎?

      生眾:發(fā)現(xiàn)了。

      師:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮砜催@樣一組問題。

      (二)教學(xué)例2

      1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      (留給學(xué)生思考的空間,師巡視了解各種情況)

      2.學(xué)生匯報(bào)。

      生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

      板書:5本 2個(gè) 2本 余1本 (總有一個(gè)抽屜里至有3本書)

      7本 2個(gè) 3本 余1本(總有一個(gè)抽屜里至有4本書)

      9本 2個(gè) 4本 余1本(總有一個(gè)抽屜里至有5本書)

      師:2本、3本、4本是怎么得到的?生答完成除法算式。

      52=2本1本(商加1)

      72=3本1本(商加1)

      92=4本1本(商加1)

      師:觀察板書你能發(fā)現(xiàn)什么?

      生1:總有一個(gè)抽屜里的至少有2本只要用 商+ 1就可以得到。

      師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      生:總有一個(gè)抽屜里的至少有3本只要用53=1本2本,用商+ 2就可以了。

      生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。

      師:到底是商+1還是商+余數(shù)呢?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

      交流、說理活動(dòng):

      生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。

      生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是總有一個(gè)抽屜里至少有2本書。

      生3∶我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書用商加1就可以了,不是商加2。

      師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?

      生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)總有一個(gè)抽屜里至少有商加1本書了。

      師:同學(xué)們同意吧?

      師:同學(xué)們的這一發(fā)現(xiàn),稱為抽屜原理, 抽屜原理又稱鴿籠原理,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱狄里克雷原理,也稱為鴿巢原理。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。抽屜原理的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

      3.解決問題。71頁第3題。(獨(dú)立完成,交流反饋)

      小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個(gè)小游戲。

      【點(diǎn)評(píng)】在這一環(huán)節(jié)的教學(xué)中教師抓住了假設(shè)法最核心的思路就是用有余數(shù)除法 形式表示出來,使學(xué)生學(xué)生借助直觀,很好的理解了如果把書盡量多地平均分給各個(gè)抽屜里,看每個(gè)抽屜里能分到多少本書,余下的書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里比平均分得的書的本數(shù)多1本。特別是對(duì)某個(gè)抽屜至少有書的本數(shù)是除法算式中的商加1, 而不是商加余數(shù),教師適時(shí)挑出針對(duì)性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了抽屜原理。

      三、應(yīng)用原理解決問題

      師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?

      生:2張/因?yàn)?4=11

      師:先驗(yàn)證一下你們的猜測(cè):舉牌驗(yàn)證。

      師:如有3張同花色的,符合你們的猜測(cè)嗎?

      師:如果9個(gè)人每一個(gè)人抽一張呢?

      生:至少有3張牌是同一花色,因?yàn)?4=21

      四、全課小結(jié)

      【點(diǎn)評(píng)】當(dāng)學(xué)生利用有余數(shù)除法解決了具體問題后,教師引導(dǎo)學(xué)生總結(jié)歸納這一類抽屜問題的一般規(guī)律,使學(xué)生進(jìn)一步理解掌握了抽屜原理。

    抽屜原理教學(xué)設(shè)計(jì)8

      導(dǎo)學(xué)內(nèi)容:P70——71例1、例2,完成做一做及練習(xí)十二1、2題

      導(dǎo)學(xué)目標(biāo)

      1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

      2、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      導(dǎo)學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      導(dǎo)學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      預(yù)習(xí)學(xué)案

      同學(xué)們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?

      導(dǎo)學(xué)案

      通過今天的學(xué)習(xí),你想知道些什么?

      自主操作探究新知

     。ㄒ唬┗顒(dòng)1

      課件出示:

      把3本書進(jìn)2個(gè)抽屜中,有幾種方法?請(qǐng)同學(xué)們放一放,再把你的想法在小組內(nèi)交流。

      1、學(xué)生動(dòng)手操作,師巡視,了解情況。

      2、匯報(bào)交流說理活動(dòng)

      你們有什么發(fā)現(xiàn)?誰能說說看?

      根據(jù)學(xué)生的回答用數(shù)字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)

      還可以用什么方法記錄?我把用圖記錄的用課件展示出來。

     、僭僬J(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?

     。ǹ傆幸粋(gè)抽屜里至少有2本書。)

     、谠鯓臃趴梢砸淮蔚贸鼋Y(jié)論?(啟發(fā)學(xué)生用平均分的放法,引出用除法計(jì)算。)板書:3÷2=1(本)……1(本)

      ③這種方法是不是很快就能確定總有一個(gè)抽屜里至少有幾本書呢?(學(xué)生交流)

     、馨4本書放進(jìn)3個(gè)抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)

     、菡n件出示:把6本書放進(jìn)5個(gè)抽屜呢?

      把7本書放進(jìn)6個(gè)抽屜呢?

      把10本書放進(jìn)9個(gè)抽屜呢?

      把100本書放進(jìn)99個(gè)抽屜呢?

      板書:7÷6=1(本)……1(本)

      10÷9=1(本)……1(本)

      100÷99=1(本)……1(本)

     、抻^察這些算式你發(fā)現(xiàn)了什么規(guī)律?

      預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù)

      師:是不是這個(gè)規(guī)律呢?我們來試一試吧!

      3、深化探究得出結(jié)論

      課件出示:7只鴿子飛回5個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

     、賹W(xué)生活動(dòng)

      ②交流說理活動(dòng)

     、鄣降资恰吧碳佑鄶(shù)”還是“商加1”?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

     、苷l能說清楚?板書:5÷3=1(只)……2(只)至少數(shù)=商+1

     。ǘ┗顒(dòng)二

      課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      分組操作后匯報(bào)

      板書:5÷2=2(本)……1(本)

      7÷2=3(本)……1(本)

      9÷2=4(本)……1(本)

      那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?

      (至少數(shù)=商+1)

      我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)德國數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?

      靈活應(yīng)用解決問題

      1、解釋課前提出的游戲問題。

      2、8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?

      3、任意13人中,至少有兩人的出生月份相同。為什么?

      4、任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。為什么?

      暢談感受:同學(xué)們,今天這節(jié)課有什么感受?

      課堂檢測(cè)

      一、填空

      1、7只鴿子飛進(jìn)5個(gè)鴿舍,至少有( )只鴿子要飛進(jìn)同伴的鴿舍里。

      2、有9本書,要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放( )本書。

      3、四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有( )人是同一月出生的。

      4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的.和是( )數(shù)。

      二、選擇

      1、5個(gè)人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。

      A、60 B、61 C、62 D、59

      2、3種商品的總價(jià)是13元,每種商品的價(jià)格都是整數(shù),至少有一種商品的價(jià)格不低于( )元。

      A、3 B、4 C、5 D、無法確定

      三、解決問題

      1、現(xiàn)有5把鎖的各1把鑰匙混在一起跟鎖對(duì)不上號(hào)了,請(qǐng)問最少試幾次就可能全部對(duì)上號(hào)?

      2、六、一班四組有男女同學(xué)各5名,把他們的名字分別用10個(gè)數(shù)字代替,至少要點(diǎn)幾個(gè)數(shù)字,才能保證叫到兩名男生或兩名女生?

      課后拓展

      1、六、二班有學(xué)生35人,李老師至少要準(zhǔn)備多少本練習(xí)本,才能保證有一個(gè)人的練習(xí)本在兩本或兩本以上?

      2、從1、2、3……100,這100個(gè)連續(xù)自然數(shù)中,任意取出51個(gè)不相同的數(shù),其中必有兩個(gè)數(shù)互質(zhì),這是為什么呢?

      板書設(shè)計(jì)

      抽屜原理

      5÷2=2……1至少有3只

      7÷2=3……1至少有4只

      9÷2=4……1至少有5只

      11÷2=5……1至少有6只

      至少數(shù)=商數(shù)+1

    抽屜原理教學(xué)設(shè)計(jì)9

      教學(xué)目標(biāo):

      1.知識(shí)與能力目標(biāo):

      經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。通過猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷。

      2.過程與方法目標(biāo):

      經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

      3.情感、態(tài)度與價(jià)值觀目標(biāo):

      通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

      教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      教學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教學(xué)準(zhǔn)備:教具:5個(gè)杯子,6根小棒;學(xué)具:每組5個(gè)杯子,6根小棒。

      教學(xué)過程:

      一、游戲激趣,初步體驗(yàn)。

      師:同學(xué)們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對(duì)嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請(qǐng)5位同學(xué)上來各抽一張,我們來驗(yàn)證一下。如果再請(qǐng)五位同學(xué)來抽,我還敢這樣肯定地說,你們相信嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,想不想研究?

      二、操作探究,發(fā)現(xiàn)規(guī)律。

      (一)經(jīng)歷“抽屜原理”的探究過程,理解原理。

      1.研究小棒數(shù)比杯子數(shù)多1的情況。

      師:今天這節(jié)課我們就用小棒和杯子來研究。

      師:如果把3根小棒放在2個(gè)杯子里,該怎樣放?有幾種放法?

      學(xué)生分組操作,并把操作的結(jié)果記錄下來。

      請(qǐng)一個(gè)小組匯報(bào)操作過程,教師在黑板上記錄。

      師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個(gè)杯子里至少有幾根小棒?板書:總有一個(gè)杯子里至少有。

      師:依此推想下去,4根小棒放在3個(gè)杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?

      學(xué)生分組操作,并把操作的結(jié)果記錄下來。

      請(qǐng)一個(gè)小組代表匯報(bào)操作過程,教師在黑板上記錄。

      師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?

      師:那如果把6根小棒放在5個(gè)杯子里,猜一猜,會(huì)有什么樣的結(jié)果?

      師:怎樣驗(yàn)證猜測(cè)的結(jié)果對(duì)不對(duì),你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1

      師:那如果用這種方法,你知道把7根小棒放在6個(gè)杯子里,把10根小棒放在9個(gè)杯子里,把100根小棒放在99個(gè)杯子里,會(huì)有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

      師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的'數(shù)量多1,總有一個(gè)杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會(huì)有什么樣的結(jié)果呢?

      2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

      師:如果把5根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果?

      引導(dǎo):先平均分,每個(gè)杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

      師:把7根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果呢?為什么?

      3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

      師:如果把9根小棒放在4個(gè)杯子里,把15根小棒放在4個(gè)杯子里,分別又會(huì)有什么結(jié)果?

      小組內(nèi)討論,再請(qǐng)同學(xué)說結(jié)果和理由。

      4、總結(jié)規(guī)律。

      師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

      總結(jié):把m個(gè)物體放在n個(gè)抽屜里(m﹥n),總有一個(gè)抽屜至少有“商+1”個(gè)物體。

      5、介紹抽屜原理。

      “抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

      三、應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力。

      1、把5本書放進(jìn)2個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?為什么?

      先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。

      只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

      3、向東小學(xué)六年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。請(qǐng)問下面兩人說的對(duì)嗎?為什么?

     。1)六年級(jí)里至少有兩人的生日是同一天。

     。2)六(2)班中至少有5人是同一個(gè)月出生的。

      4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

      5、師:開課時(shí)我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會(huì)有2張牌是同一花色的?你能用所學(xué)的抽屜原理來解釋嗎?

      四、全課小結(jié)。

      說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識(shí)?(師生共同對(duì)本節(jié)課的內(nèi)容進(jìn)行小結(jié))

      五、布置作業(yè)。

      課本73頁練習(xí)十二第題。

      六、板書設(shè)計(jì)。

      數(shù)學(xué)廣角——抽屜原理

    抽屜原理教學(xué)設(shè)計(jì)10

      教學(xué)目標(biāo):

      1.知識(shí)與能力:初步了解抽屜原理,運(yùn)用抽屜原理知識(shí)解決簡單的實(shí)際問題。

      2.過程和方法:經(jīng)歷抽屜原理的探究過程,通過動(dòng)手操作、分析、推理等活動(dòng),發(fā)現(xiàn)、歸納、總結(jié)原理。

      3.情感與價(jià)值:通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力;提高同學(xué)們解決問題的能力和興趣。

      教學(xué)重點(diǎn):

      經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      教學(xué)難點(diǎn):

      理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教學(xué)過程:

      一、創(chuàng)設(shè)情景

      導(dǎo)入新課

      師:同學(xué)們喜歡玩游戲嗎?講臺(tái)前面有6張凳子,請(qǐng)7位同學(xué)來搶凳子坐。我不看同學(xué)們?cè)鯓幼,我敢肯定的說:這6張凳子中總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?(師生演示)

      師:想知道老師為什么能做出如此準(zhǔn)確的判斷嗎?這其中蘊(yùn)含一個(gè)有趣的數(shù)學(xué)原理——抽屜原理。(板書課題)這節(jié)課我們就一起來研究這個(gè)數(shù)學(xué)原理。

      師:通過今天的學(xué)習(xí),你想知道些什么?

      二、自主操作

      探究新知

      (一)活動(dòng)一課件出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?師:你們擺擺看,會(huì)有什么發(fā)現(xiàn)?把你們發(fā)現(xiàn)的結(jié)果用自己喜歡的方式記錄下來。

      1、學(xué)生動(dòng)手操作,師巡視,了解情況。

      2、匯報(bào)交流說理活動(dòng)

     、賻煟河惺裁窗l(fā)現(xiàn)?誰能說說看?

      師根據(jù)學(xué)生的`回答用數(shù)字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)師:你們是這樣記錄的嗎?

      師:還可以用圖記錄。我把用圖記錄的用課件展示出來。師:還可以用表格記錄。師板書在黑板上。 ②再認(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?

      板書:不管怎樣放,總有一個(gè)筆筒里至少有2枝鉛筆。

     、墼鯓訑[可以一次得出結(jié)論?(啟發(fā)學(xué)生用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)

     、軒煟哼@種方法是不是很快就能確定總有一個(gè)筆筒里至少有幾枝鉛筆呢?(學(xué)生交流)

     、莅5枝鉛筆放進(jìn)4個(gè)筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)

     、拚n件出示:把6枝鉛筆放進(jìn)5個(gè)筆筒呢?把7枝鉛筆放進(jìn)6個(gè)筆筒呢?把10枝鉛筆放進(jìn)9個(gè)筆筒呢?把100枝鉛筆放進(jìn)99個(gè)筆筒呢?板書:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)

     、哂^察這些算式你發(fā)現(xiàn)了什么規(guī)律?預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù)

      師:是不是這個(gè)規(guī)律呢?我們來試一試吧!

      3、深化探究得出結(jié)論

      課件出示:5只鴿子飛回3個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

     、賹W(xué)生活動(dòng)

     、诮涣髡f理活動(dòng)

      預(yù)設(shè):生1:題目的說法是錯(cuò)誤的,用商加余數(shù),應(yīng)該至少有3只鴿子要飛進(jìn)同一個(gè)鴿籠。

      生2:不同意!不是“商加余數(shù)”是“商加1”.

     、蹘煟旱降资恰吧碳佑鄶(shù)”還是“商加1”?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

     、軒煟赫l能說清楚?板書:5÷3=1(只)2(只)至少數(shù)=商+1

     。ǘ┗顒(dòng)二

      課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      1、分組操作后匯報(bào)

      板書:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)

      2、那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?生:至少數(shù)=商+1

      3、師:我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的“抽屜原理

      ”,(點(diǎn)題)!俺閷显怼庇址Q“鴿籠原理”,最先是由19世紀(jì)德國數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的問題,讓我們來試試好嗎?

      三、靈活應(yīng)用

      解決問題

      1、解釋課前提出的游戲問題。

      2、課件出示:8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?

      3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?

      4、課件出示:任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。為什么?

      四、暢談感受

      教學(xué)結(jié)束

      同學(xué)們,今天這節(jié)課有什么感受?(抽生談?wù)劊瑤熆偨Y(jié)。)在這堂課中,我首先設(shè)計(jì)(搶凳子游戲,講臺(tái)前面有6張凳子,請(qǐng)7位同學(xué)來搶凳子坐。我不看同學(xué)們?cè)鯓幼,我敢肯定的說:這6張凳子中同學(xué)們不管怎樣坐,總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?)目的一:小孩子最喜歡玩游戲,一說玩游戲,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性;目的二:激發(fā)學(xué)生思考什么是抽屜原理,對(duì)解決這類問題有什么作用?

      接著出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?我讓學(xué)生用自已喜歡的方法動(dòng)手操作、匯報(bào)、板書,得出結(jié)論,又提出:怎樣擺可以一次得出結(jié)論?小組討論,然后針對(duì)他們的方法進(jìn)行講解(邊操作邊講解),其實(shí)這方法是用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)得出預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù),讓學(xué)生有更深的認(rèn)識(shí),同時(shí)也讓他們了解平均分的擺法最好,為后面的學(xué)習(xí)打下鋪墊。

      然后,出示活動(dòng)二:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?先動(dòng)手操作,同時(shí)用算式計(jì)算,看算式的規(guī)律是:發(fā)現(xiàn)是至少數(shù)=商+1接著我反問任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。為什么?這樣有利于學(xué)生的反向思維能力的鍛煉。

    抽屜原理教學(xué)設(shè)計(jì)11

      【教學(xué)內(nèi)容】

      《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級(jí)下冊(cè)。

      【教材分析】

      讓學(xué)生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實(shí)際問題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過程,提高學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。

      【學(xué)情分析】

      教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學(xué)生在操作實(shí)物的過程中可以發(fā)現(xiàn)一個(gè)現(xiàn)象:不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。

      【教學(xué)目標(biāo)】

      1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

      2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      【教學(xué)重點(diǎn)】

      經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      【教學(xué)難點(diǎn)】

      理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      【教具、學(xué)具準(zhǔn)備】

      每組都有3個(gè)文具盒和4枝鉛筆。

      【教學(xué)過程】

      一、談話導(dǎo)入

      教師:同學(xué)們,你們?cè)陔娔X上玩過“電腦算命”嗎?“電腦算命”看起來很深?yuàn)W,只要報(bào)出你的出生的年、月、日和性別,一按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)、財(cái)運(yùn)等。通過今天的學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非?尚突奶频,是不能信的鬼把戲。

      板書:抽屜原理

      教師:通過學(xué)習(xí),你想解決那些問題?

      根據(jù)學(xué)生回答,教師把學(xué)生提出的問題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運(yùn)用“抽屜原理”能解決那些問題?怎樣運(yùn)用“抽屜原理”解決實(shí)際問題?

      二、通過操作,探究新知

     。ㄒ唬┱J(rèn)識(shí)“抽屜原理”

      出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?

      師:請(qǐng)同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)

      師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?

      生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

      師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

      師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

      師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

     。4,0,0)(3,1,0) (2,2,0)(2,1,1),

      師:還有不同的放法嗎?

      生:沒有了。

      師:你能發(fā)現(xiàn)什么?

      生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:“總有”是什么意思?

      生:一定有

      師:“至少”有2枝什么意思?

      生:不少于兩只,可能是2枝,也可能是多于2枝?

      師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)

      師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?

      學(xué)生思考——組內(nèi)交流——匯報(bào)

      師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

      組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

      師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)

      師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

      師:這種分法,實(shí)際就是先怎么分的`?

      生眾:平均分

      師:為什么要先平均分?(組織學(xué)生討論)

      生1:要想發(fā)現(xiàn)存在著“總有一個(gè)盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

      生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

      師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說一說)

      師:哪位同學(xué)能把你的想法匯報(bào)一下,

      生:(一邊演示一邊說)5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

      生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:把7枝筆放進(jìn)6個(gè)盒子里呢?

      把8枝筆放進(jìn)7個(gè)盒子里呢?

      把9枝筆放進(jìn)8個(gè)盒子里呢?……

      你發(fā)現(xiàn)什么?

      生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

      師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

     。ǘ┨骄啃轮

      1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      (留給學(xué)生思考的空間,師巡視了解各種情況)

      2.學(xué)生匯報(bào)。

      生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

      板書:5本2個(gè)2本……余1本(總有一個(gè)抽屜里至有3本書)

      7本2個(gè)3本……余1本(總有一個(gè)抽屜里至有4本書)

      9本2個(gè)4本……余1本(總有一個(gè)抽屜里至有5本書)

      師:2本、3本、4本是怎么得到的?生答完成除法算式。

      5÷2=2本……1本(商加1)

      7÷2=3本……1本(商加1)

      9÷2=4本……1本(商加1)

      師:觀察板書你能發(fā)現(xiàn)什么?

      生1:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

      師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

      生:“總有一個(gè)抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

      生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。

      師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對(duì)呢?在小組里進(jìn)行研究、討論。

      交流、說理活動(dòng):

      生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。

      生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是“總有一個(gè)抽屜里至少有2本書”。

      生3我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,“總有一個(gè)抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

      師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?

      生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

      師:同學(xué)們同意吧?

      師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

      3.解決問題。71頁第3題。(獨(dú)立完成,交流反饋)

      小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個(gè)小游戲。

      三、應(yīng)用原理解決問題

      師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?

      生:2張/因?yàn)?÷4=1…1

      師:先驗(yàn)證一下你們的猜測(cè):舉牌驗(yàn)證。

      師:如有3張同花色的,符合你們的猜測(cè)嗎?

      師:如果9個(gè)人每一個(gè)人抽一張呢?

      生:至少有3張牌是同一花色,因?yàn)?÷4=2…1

      四、全課小結(jié)

      上面我們所證明的數(shù)學(xué)原理就是最簡單的“抽屜原理”,可以概括為:把m個(gè)物體任意放到m-1個(gè)抽屜里,那么總有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。

      五、思維訓(xùn)練

      1.從街上隨便找來13人,就可以斷定他們中至少有兩個(gè)人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。

      2.任意367名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^生日。說明理由。

      【教學(xué)反思】

      1、小組活動(dòng)很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題即好玩又有意義。

      2、理解“抽屜原理”對(duì)于學(xué)生來說有著一定的難度。

      3、部分學(xué)生很難判斷誰是物體,誰是抽屜。

    抽屜原理教學(xué)設(shè)計(jì)12

      教學(xué)目標(biāo):

      1.使學(xué)生能理解抽取問題中的一些基本原理,并能解決有關(guān)簡單的問題。

      2.體會(huì)數(shù)學(xué)與日常生活的聯(lián)系,了解數(shù)學(xué)的價(jià)值,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。

      教學(xué)重點(diǎn):抽取問題。

      教學(xué)難點(diǎn):理解抽取問題的基本原理。

      教學(xué)過程:

      一、創(chuàng)設(shè)情境,復(fù)習(xí)舊知

      1、出示復(fù)習(xí)題:

      師:老師這兒有一個(gè)問題,不知道哪位同學(xué)能幫助解答一下?

      2、課件出示:把3個(gè)蘋果放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜至少放2個(gè)蘋果,為什么?

      3、學(xué)生自由回答。

      二、教學(xué)例2

      1、出示:盒子里有同樣大小的紅球和藍(lán)球各4個(gè)。要想摸出的球一定有2個(gè)同色的,最少要摸出幾個(gè)球?

     。1)組織學(xué)生讀題,理解題意。

      教師:你們能猜出結(jié)果嗎?

      組織學(xué)生猜一猜,并相互交流。

      指名學(xué)生匯報(bào)。

      學(xué)生匯報(bào)時(shí)可能會(huì)答出:只摸4個(gè)球就可以了,至少要摸出5個(gè)球……

      教師:能驗(yàn)證嗎?

      教師拿出準(zhǔn)備好的紅球及藍(lán)球,組織學(xué)生到講臺(tái)前來動(dòng)手摸一摸,驗(yàn)證匯報(bào)結(jié)果的正確性。

      (2)教師:剛才我們通過驗(yàn)證的方法得出了結(jié)論,聯(lián)系前面所學(xué)的知識(shí),這是一個(gè)什么問題?

      2、組織學(xué)生議一議,并相互交流。再指名學(xué)生匯報(bào)。

      教師:上面的問題是一個(gè)抽屜問題,請(qǐng)同學(xué)們找一找:“抽屜”是什么?“抽屜”有幾個(gè)?

      組織學(xué)生議一議,并相互交流。

      指名學(xué)生匯報(bào),使學(xué)生明確:抽屜就是顏色數(shù)。(板書)

      教師:能用例1的知識(shí)來解答嗎?

      組織學(xué)生議一議,并相互交流。

      指名學(xué)生匯報(bào)。

      使學(xué)生明確:只要分的.物體比抽屜多,就能保證總有一個(gè)抽屜至少放蕩2個(gè)球,因此要保證摸出兩個(gè)同色的球,摸出球的數(shù)量至少要比顏色的種數(shù)多一。

      (3)組織學(xué)生對(duì)例題的解答過程議一議,相互交流,理解解決問題的方法。

      學(xué)生不難發(fā)現(xiàn):只要摸出的球比它們的顏色種數(shù)多1,就能保證有兩個(gè)球同色。

      3、做一做

      第1題。

      1、獨(dú)立思考,判斷正誤。

      2、同學(xué)交流,說明理由。其中“370名學(xué)生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學(xué)生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導(dǎo)學(xué)生把“生日問題”轉(zhuǎn)化成“抽屜問題”。因?yàn)橐荒曛凶疃嘤?66天,如果把這366天看作366個(gè)抽屜,把370個(gè)學(xué)生放進(jìn)366個(gè)抽屜,人數(shù)大于抽屜數(shù),因此總有一個(gè)抽屜里至少有兩個(gè)人,即他們的生日是同一天。而一年中有12個(gè)月,如果把這12個(gè)月看作12個(gè)抽屜,把49個(gè)學(xué)生放進(jìn)12個(gè)抽屜,49÷12=4……1,因此,總有一個(gè)抽屜里至少有5(即4+1)個(gè)人,也就是他們的生日在同一個(gè)月。

      三鞏固練習(xí)

      完成課文練習(xí)十二第1、3題。

      四、總結(jié)評(píng)價(jià)

      1、師:這節(jié)課你有哪些收獲或感想?

      五、布置作業(yè)

      1.做一做。把紅、黃、藍(lán)三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對(duì)同色的小棒呢?

      2.試一試。給下面每個(gè)格子涂上紅色或藍(lán)色。觀察每一列,你有什么發(fā)現(xiàn)?如果只涂兩列的話,結(jié)論有什么變化呢?

      3、拓展練習(xí)(選做)

     。1)任意給出5個(gè)非0的自然數(shù)。有人說一定能找到3個(gè)數(shù),讓這3個(gè)數(shù)的和是3的倍數(shù)。你信不信?

     。2)把1~8這8個(gè)數(shù)任意圍成一個(gè)圓圈。在這個(gè)圈上,一定有3個(gè)相鄰的數(shù)之和大于13。你知道其中的奧秘嗎?

    抽屜原理教學(xué)設(shè)計(jì)13

      教學(xué)內(nèi)容

      人教版六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角

      教學(xué)目標(biāo):

      1、初步了解“抽屜原理”。

      2、引導(dǎo)學(xué)生用操作枚舉或假設(shè)的方法探究“抽屜原理”的一般規(guī)律。

      3、會(huì)用抽屜原理解決簡單的實(shí)際問題。

      4、經(jīng)歷從具體的抽象的探究過程,初步了解抽屜原理,提高學(xué)生又根據(jù)有條理的進(jìn)行思考和推理的能力,體會(huì)比較的.學(xué)習(xí)方法。

      教學(xué)重點(diǎn):抽屜原理的理解和簡單應(yīng)用。

      教學(xué)難點(diǎn):找出實(shí)際問題與抽屜原理的內(nèi)在聯(lián)系。

      教學(xué)過程:

      一、開展小游戲,引入新課。

      師:在我們上課之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰愿來?

      師:聽清要求,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

      師:開始。

      師:都坐下了嗎?

      生:坐下了。

      師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學(xué)”我說得對(duì)嗎?

      生:對(duì)!

      師:想知道老師為什么會(huì)做出如此準(zhǔn)確的判斷嗎?其實(shí)這里面蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理——抽屜原理。

      二、實(shí)驗(yàn)探索

      第一步:研究4枝鉛筆放進(jìn)3個(gè)文具盒,有哪些不同的放法?你們又能從這些方法中發(fā)現(xiàn)什么有趣的現(xiàn)象?

      1、(出示)師:把4枝筆放進(jìn)3個(gè)文具盒,有哪些不同的放法?(請(qǐng)一生示范)你們又能從這些放法中發(fā)現(xiàn)什么有趣的現(xiàn)象?

      2、師:接下來,就請(qǐng)同學(xué)們以小組為單位進(jìn)行實(shí)驗(yàn)操作,并把放法和發(fā)現(xiàn)填在記錄卡上。

      放法

      文具盒1

      文具盒2

      文具盒3

      最多放幾枝

      A

      B

      C

      D

      我們的發(fā)現(xiàn)

      3、小組匯報(bào)交流。

     。4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

      生:不管怎么放,總有1個(gè)文具盒里至少有2枝鉛筆。

      師:“總有”是什么意思?

      生:一定有。

      師:“至少”是什么意思?

      生:不少于2枝,可能是3枝或4枝。

      生小結(jié):把4枝鉛筆放進(jìn)3個(gè)文具盒,總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。(最多有2枝或2枝以上)

      4、師:把4枝筆飯放進(jìn)3個(gè)文具盒里,不管怎么放,總有一個(gè)文具盒里至少有2枝鉛筆。這是我們通過實(shí)際操作發(fā)現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論,找出至少數(shù)呢?

      生:我們發(fā)現(xiàn)如果每個(gè)文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)文具盒里,總有一個(gè)文具盒里至少有2枝鉛筆。

     。▽W(xué)生操作演示)

      師:這種分法,實(shí)際就是先怎么分的?

      生眾:平均分

      師:為什么要先平均分?

      生1:要想發(fā)現(xiàn)存在著“總有一個(gè)文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)文具盒里,一定會(huì)出現(xiàn)“總有一個(gè)文具盒里一定至少有2枝”。

      生2:這樣分,只分一次就能確定總有一個(gè)文具盒至少有幾枝筆了。

      把筆盡量每個(gè)文具盒里都放,還要盡量平均放。怎樣用算式表示呢?

      4÷3=1……11+1=2

      5、那照這樣的思路:把6枝鉛筆放進(jìn)5個(gè)文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2

      把7枝鉛筆放進(jìn)6個(gè)文具盒,怎樣想?……

      100枝鉛筆放進(jìn)99個(gè)文具盒呢?

      師提問:發(fā)現(xiàn)了什么規(guī)律?

      生小結(jié),師整理:鉛筆數(shù)比文具盒數(shù)多1,不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。(同桌之間說一說)

      第二步:研究鉛筆數(shù)比文具盒數(shù)不是多1的現(xiàn)象。

      1、師:研究到這兒,還想繼續(xù)研究嗎?還有哪些值得我們繼續(xù)研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)

      2、師:如果鉛筆數(shù)比文具盒數(shù)不是多1,而是多2、3……,總有一個(gè)文具盒里至少會(huì)有幾枝鉛筆?

     。ǔ鍪荆喊5本書放進(jìn)2個(gè)抽屜里,總有一個(gè)抽屜里至少會(huì)有幾本書呢?)

      生獨(dú)立思考,在小組內(nèi)交流,匯報(bào)。

      師:許多同學(xué)都沒有再擺學(xué)具,用的什么方法?

      生:平均分。把5本書平均分到2個(gè)抽屜里,每個(gè)抽屜里放2本書,還剩一本書,無論放在哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。生:5÷2=2……12+1=3

     。ǔ鍪荆5本書放進(jìn)3個(gè)抽屜呢?8本書放進(jìn)5個(gè)抽屜呢?)

      5÷3=1……21+1=28÷5=1……31+3=4

      師:至少數(shù)為什么不是“商+余數(shù)”?(小組討論,匯報(bào))

      4、對(duì)比觀察算式,你能發(fā)現(xiàn)求至少數(shù)的規(guī)律嗎?

      物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1

      5、總結(jié)抽屜原理,運(yùn)用抽屜原理的關(guān)鍵是什么?(找準(zhǔn)物體數(shù)和抽屜數(shù)),閱讀相關(guān)資料。

      a÷n=b……c(c≠0)把a(bǔ)個(gè)物體放進(jìn)n個(gè)抽屜里,總有一個(gè)抽屜里至少放進(jìn)(b+1)個(gè)物體。

      三、應(yīng)用原理。

      1、請(qǐng)你試一試。(口答,指出什么是物體數(shù),什么是抽屜數(shù))

     。1)6只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一鴿舍,為什么?

     。2)把13只小兔關(guān)在5個(gè)籠中,至少有幾只兔子要關(guān)在同一個(gè)籠里?

     。3)有5袋餅干,每袋10快,發(fā)給6個(gè)小朋友,總有一個(gè)小朋友至少分到幾塊餅干?

      2、下面的說法對(duì)嗎?說說你的理由。

      向東小學(xué)6年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。

      A、六年級(jí)里至少有2名學(xué)生的生日是同一天。

      (370個(gè)物體,366個(gè)抽屜)

      B、六(2)班只有5名學(xué)生的生日在同一月。

      (49個(gè)物體,12個(gè)抽屜,“只有”就是一定)

      C、六(2)至少有25位學(xué)生是同一性別。

      3、玩“猜?lián)淇恕钡挠螒颉?/p>

      抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2

      抽15張至少有幾張數(shù)字相同?15÷13=1……21+1=2

      4、學(xué)生把學(xué)生生活中能用抽屜原理解釋的現(xiàn)象寫下來。

      留心觀察+細(xì)心思考=偉大發(fā)現(xiàn)

      四、全課總結(jié)。

    抽屜原理教學(xué)設(shè)計(jì)14

      【設(shè)計(jì)理念】

      本課通過創(chuàng)設(shè)情境、直觀和實(shí)際操作,使學(xué)生進(jìn)一步經(jīng)歷“抽屜原理”的探究過程,并對(duì)一些簡單的實(shí)際問題“模型化”,從而在用“抽屜原理”加以解決的過程中,促進(jìn)邏輯推理能力的發(fā)展,培養(yǎng)分析、推理、解決問題的能力以及探索數(shù)學(xué)問題的興趣,同時(shí)也使學(xué)生感受到數(shù)學(xué)思想方法的奇妙與作用,在數(shù)學(xué)思維的訓(xùn)練中,逐步形成有序地、嚴(yán)密地思考問題的意識(shí)。

      【教學(xué)內(nèi)容】

      《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》六年級(jí)下冊(cè)第70--71頁的內(nèi)容。

      【教學(xué)目標(biāo)】

      1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

      2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      【教學(xué)重點(diǎn)】經(jīng)歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。

      【教學(xué)難點(diǎn)】 理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      【教學(xué)準(zhǔn)備】多媒體課件、每組準(zhǔn)備13枚“金幣”和5個(gè)杯子。

      【教學(xué)課時(shí)】 一課時(shí)

      【教學(xué)過程】

      一.創(chuàng)設(shè)情景,引入新課。

      在研究新課之前得先請(qǐng)同學(xué)們見見自己的老朋友,看看誰還認(rèn)識(shí)他?

      出示圖片——魯濱遜畫像。

      二.創(chuàng)設(shè)平臺(tái),合作探究。

      一).探索比抽屜數(shù)多1的至少數(shù)。

      話說魯賓遜完全不顧父愿,甚至違抗父命,也全然不聽母親的懇求和朋友們的勸阻,一意孤行開始了他的冒險(xiǎn)之旅。一天拂曉,當(dāng)他所乘坐的正駛向加那利群島時(shí),被一艘土耳其海盜船襲擊,所有船員全部被俘。魯賓遜被海盜船長作為自己的戰(zhàn)利品留了下來,成了船長的奴隸。這一日,海盜們沒有出海,懶洋洋的在岸上休息,船長命令魯賓遜給海盜們傳授些文明人的知識(shí),讓海盜們變得像魯賓遜一樣富有智慧?粗雷由祥W閃發(fā)光的金幣,魯賓遜想到了一個(gè)辦法,他找來兩個(gè)盒子:

      出示例一:

      1.把3枚金幣放入2個(gè)盒子里,有幾種放法?

      學(xué)生拿起自己手中的學(xué)具做實(shí)驗(yàn),小組討論后發(fā)言,其他同學(xué)可以補(bǔ)充。

      如果每個(gè)盒子里最少放一枚,要使所有金幣都放進(jìn)盒子里,不管怎么放,總有一個(gè)盒子里至少有幾枚金幣?

      2.師:把4枚金幣都放進(jìn)3個(gè)盒子里,有幾種不同的放法?請(qǐng)同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

      師:誰來展示一下你擺放的情況?這種分法,實(shí)際就是先怎么分的?為什么要先平均分?(組織學(xué)生討論)

      小結(jié): 用最不利原則設(shè)想,如果我們先讓每個(gè)筆筒里放1枚金幣,最多放3枚。剩下的1枚還要放進(jìn)其中的一個(gè)筆筒。所以不管怎么放,總有一個(gè)筆筒里至少放進(jìn)2枚金幣。

      二).探索比抽屜數(shù)多幾的至少數(shù)。

      師:那么把13枚金幣放進(jìn)3個(gè)盒子里呢?

      (可以結(jié)合操作說一說)

      師:把13枚金幣放進(jìn)5個(gè)盒子里呢?

     。艚o學(xué)生思考的空間,師巡視了解各種情況)

      師:這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,得到這個(gè)結(jié)論呢?請(qǐng)同學(xué)們觀察板書,小組研究、討論。找一找其中的規(guī)律。

      小結(jié):至少數(shù)等于數(shù)的本數(shù)除以抽屜數(shù),再用所得的商加1。

      (板書:至少數(shù)=商+1)

      三).解析原理,加深認(rèn)識(shí)

      師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”。抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱作“鴿巢原理”。

      出示:7只鴿子飛回5個(gè)鴿舍,至少有兩只鴿子飛進(jìn)同一個(gè)鴿舍?學(xué)生回答后觀看演示。

      三.應(yīng)用原理,解決問題。

      一).鞏固應(yīng)用一——撲克牌游戲

      16世紀(jì)的海盜們哪能摸得清什么抽屜原理呢?一聽原理二字便昏頭漲腦,不知什么時(shí)候早在下面玩起了撲克牌。這時(shí),魯賓遜靈機(jī)一動(dòng),將大家正玩的撲克牌中的大小王拿掉,說:每人抽五張牌,不管怎么抽取,至少有兩張是同一花色的牌,你們相信嗎?說著,給坐在旁邊的海盜甲海盜乙每人任意抽取了5張牌!叭绻幸粋(gè)人手里的牌都不是同一花色,任由船長處置;如果每個(gè)人手里最少有2張花色相同的牌,請(qǐng)船長允許我回故鄉(xiāng)赫爾去吧!贝L眼珠一轉(zhuǎn),同意了魯賓遜的要求。

      那么,事實(shí)是不是這樣呢?同學(xué)們相信魯賓遜的話嗎?

      教師發(fā)撲克牌,學(xué)生回答。

      二).鞏固應(yīng)用二——分寶1

      魯賓遜雖然證實(shí)了自己是正確的,可是狡猾的船長并沒有答應(yīng)他的要求,放他回家。魯賓遜只好跟著海盜首領(lǐng)到處掠奪殺戮。

      有一次,他們獲得了很多寶貝,海盜首領(lǐng)非常高興,對(duì)手下8個(gè)小海盜說,這些寶貝都給你們了,你們自己處理吧,沒想到小海盜平時(shí)都搶慣了,一擁而上,有人拿得很多,有人很少,甚至有人一件寶貝也沒拿到,看到小海盜們亂哄哄的樣子,海盜首領(lǐng)非常生氣,就想懲罰一下那些貪婪的海盜,機(jī)會(huì)終于來了!有一次:海盜們又獲得了73件寶貝,海盜首領(lǐng)又叫8個(gè)小海盜自己分。且規(guī)定:1、必須分完。2、若某人拿10件或10件以上的寶貝,說明他是個(gè)過分貪婪的人,就把他扔進(jìn)大海喂鯊魚。

      海盜們是否都能逃過這一劫呢?小組討論后派代表說說想法,其他同學(xué)可以補(bǔ)充。無論怎樣分,總有一個(gè)海盜至少會(huì)拿到10件,這個(gè)海盜怎么辦呢?學(xué)生自由談看法。

      師:正在海盜們擔(dān)心的時(shí)候,事情有了轉(zhuǎn)機(jī),聰明的魯賓遜趁著天黑偷偷地把一件寶貝扔進(jìn)大海,現(xiàn)在只剩下72件寶貝,大家都平安無事。

      三).鞏固應(yīng)用三——分寶2

      師:海盜們終于逃過一劫,海盜首領(lǐng)回到自己屋里,悶悶不樂,夫人問他為什么不開心,海盜首領(lǐng)如實(shí)相告,夫人說是不是有人把一件寶貝扔到海里去了,海盜首領(lǐng)如夢(mèng)方醒,決心下一次不再上當(dāng),又是在一個(gè)風(fēng)急天黑的夜晚:海盜們獲得了79件寶貝,首領(lǐng)還是要8個(gè)小海盜自己分,規(guī)則不變,還警告,79件寶貝已數(shù)得清清楚楚,誰要是作弊,也要受到懲罰。

      師:小海盜們大驚失色,心想這下可能真的逃不過去了,只有聰明的魯賓遜鎮(zhèn)定自若,站出來對(duì)海盜首領(lǐng)說,既然寶貝比上次增加了6件,能不能把限定的10件提高1件?海盜首領(lǐng)心想,寶貝增加這么多,而限定只提高1件,還是肯定有人會(huì)受到懲罰,就同意了小海盜的請(qǐng)求。你認(rèn)為首領(lǐng)的想法對(duì)嗎?說說你是怎樣想的.。

      學(xué)生先小組討論,然后再叫幾個(gè)學(xué)生來說說是怎樣想的。老師再對(duì)學(xué)生的思路進(jìn)行梳理。

      以上我們所碰到的問題是什么問題?他的解答或證明的方法是怎樣的?你能否找到被分的物品數(shù)和抽屜數(shù)?

      師:靠著魯賓遜的聰明才智,事情終于風(fēng)平浪靜,在以后的日子里魯賓遜自己的智慧贏得了海盜首領(lǐng)的信任,有了獨(dú)自駕駛小艇的權(quán)利,借著海盜首領(lǐng)拜訪朋友的機(jī)會(huì),魯賓遜駕著小艇逃到了一個(gè)無人的荒島,并搭救了一個(gè)野蠻人,起名“星期五”,有一天,他們倆無所事事,玩起了游戲。

      四).鞏固應(yīng)用4——摸球游戲

      他們用一個(gè)盒子,里面裝有同樣大小數(shù)量相同的紅、黃、藍(lán)球各若干個(gè),兩人各自摸到自己的盤子里,想一想,最少要摸幾次,才能保證一定有2個(gè)是同色的?

      讓學(xué)生講講思路,老師再對(duì)學(xué)生的思路進(jìn)行梳理。

      四.拓展延伸

      魯賓遜的故事今天先講到這里,通過今天的學(xué)習(xí)你有什么收獲?

      五.布置作業(yè)

      每人編2道抽屜類問題作為今天的作業(yè),讓自己的同桌來證明或解答。

    抽屜原理教學(xué)設(shè)計(jì)15

      桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。

      教學(xué)理念:

      激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!,使復(fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。

      教學(xué)目標(biāo)

      1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

      2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      教學(xué)重難點(diǎn)

      重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      難點(diǎn):理解“抽屜原理”,并對(duì)一些簡單實(shí)際問題加以“模型化”。

      教學(xué)過程:

      一、課前游戲引入。

      師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰愿來?(學(xué)生上來后)

      師:聽清要求 ,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。

      師:開始。

      師:都坐下了嗎?

      生:坐下了。

      師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”我說得對(duì)嗎?

      生:對(duì)!

      師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。(抽屜原理)

      二、通過操作,探究新知

      (一)探究例1

      1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。

     。1)要把3枝鉛筆放進(jìn)2個(gè)文具盒 ,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

     。2)反饋:兩種放法:(3,0)和(2,1)。

     。3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)

     。4)“總有”什么意思?(一定有)

     。5)“至少”有2枝什么意思?(不少于2枝)

      小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)

      2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。

     。1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

     。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

      (3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)

      (4)你是怎么發(fā)現(xiàn)的?

     。5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的`孩子。)

     。6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)

      (7)誰能用算式來表示這位同學(xué)的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?

      (8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問題,同學(xué)們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡單?

      3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

      把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

      把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

      把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

      4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)

      5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆!

      6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。

      這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體!

      7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?

      過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮硌芯窟@樣一組問題。

      (二)探究例2

      1、研究把5本書放進(jìn)2個(gè)抽屜。

     。1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)

     。2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)

     。3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。

     。4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?

      2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。

      如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。

      如果把11本書放進(jìn)3個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?

      3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)

      4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

      5、做一做:

      7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?

      8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?

     。ㄏ茸寣W(xué)生獨(dú)立思考,在小組里討論,再全班反饋)

      三、遷移與拓展

      下面我們一起來放松一下,做個(gè)小游戲。

      我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?

      四、總結(jié)全課

      這節(jié)課,你有什么收獲?

    【抽屜原理教學(xué)設(shè)計(jì)】相關(guān)文章:

    抽屜原理教學(xué)設(shè)計(jì)06-12

    抽屜原理教學(xué)設(shè)計(jì)優(yōu)秀10-09

    《抽屜原理》優(yōu)秀教學(xué)設(shè)計(jì)07-30

    《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀04-24

    抽屜原理教學(xué)設(shè)計(jì)優(yōu)秀10-16

    《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀9篇(優(yōu))10-14

    阿基米德原理教學(xué)設(shè)計(jì)06-02

    最新原電池工作原理教學(xué)設(shè)計(jì)04-29

    (優(yōu)秀)阿基米德原理教學(xué)設(shè)計(jì)01-16

    (精品)阿基米德原理教學(xué)設(shè)計(jì)6篇11-17