久久综合国产中文字幕,伊人久久大香线蕉一区,夜色福利少妇专区,亚洲日本va中文字带亚洲

    我要投稿 投訴建議

    分割等腰三角形的說課稿

    時間:2021-07-18 09:19:48 說課稿 我要投稿

    分割等腰三角形的說課稿模板

      作為一名教師,時常會需要準備好說課稿,借助說課稿可以有效提升自己的教學能力。說課稿應該怎么寫才好呢?以下是小編收集整理的分割等腰三角形的說課稿模板,歡迎大家借鑒與參考,希望對大家有所幫助。

    分割等腰三角形的說課稿模板

      分割等腰三角形的說課稿1

      一、教材分析

     。ㄒ唬、教材內容的地位和作用

      《分割等腰三角形》是新教材第十四章《三角形》之后的探究課,我根據(jù)本校班級學生基礎知識掌握良好、認知能力良好但是思維品質缺乏、尖子生鳳毛麟角等實際情況下,降低要求設計的一節(jié)課,三角形是平面幾何最簡單的直線型封閉圖形,三角形的知識是進一步探究學習其他圖形性質的基礎;這個學習階段,處在是演繹幾何向論證幾何的過渡期,本章對三角形的研究呈現(xiàn)從一般到特殊的過程,而等腰三角形對于學生學習和研究軸對稱性具有重要意義。本節(jié)課《分割等腰三角形》的設計也遵循了這個規(guī)律,從研究一般三角形到等腰三角形,探究過程中還可以幫助學生理解和掌握運用三角形知識,通過探究活動,不僅加強探索實踐精神,而且還讓學生感受到我國古老的數(shù)學文明,激發(fā)探索熱情。

     。ǘ、教學目標

      根據(jù)新的《課程標準》要求和教材分析,結合本班學生實際情況,制定如下教學目標:

      1.學會探究把一個一般的三角形分成兩個等腰三角形的條件,進而會探究將一個等腰三角形分割成兩個等腰三角形,計算可以被分割的等腰三角形的度數(shù)。

      2.體現(xiàn)數(shù)形結合、分類討論的思想。

      3.培養(yǎng)學生的自主探究的意識,初步掌握探究的一般思路和獨立思考的習慣、提高解決問題的能力。

     。ㄈ┙虒W重點、難點

      教學重點、難點:探究把一個一般的三角形分割成兩個等腰三角形的思路.

      探究把一個一般的三角形分割成兩個等腰三角形的一般規(guī)律。

      二、教法、學法分析

      本節(jié)課涉及的知識點有等腰三角形的“等邊對等角”、“等角對等邊”、“三角形內角和”定理(“三角形一個外角等于和它不相鄰的兩個內角之和”定理),都是前階段學生經(jīng)常使用的熟悉知識,計算分割好的三角形中角之間的關系應該不難,因此本節(jié)課將用較多的時間引導學生如何根據(jù)圖形探究分割的方法和規(guī)律,教師以多媒體為教學平臺,通過精心設計問題和有效的激勵機制充分調動學生的學習積極性,達到事半功倍的教學效果。而學生也在老師的鼓勵引導下,小結方法,通過小組討論等方式體會知識的應用和數(shù)學思考的方法增強學習的成就感和自信心,培養(yǎng)學生的探索精神和探究能力。

      三、教學程序設計

      教學過程

      設計思路和各環(huán)節(jié)分析

     。ㄒ唬┱故窘滩牡110頁例題3,以回顧作為引入:

      例3:如圖點D在⊿ABC的邊AC上,已知∠A=100°,∠ABC=60°∠ABD=40°。試指出圖中相等的線段并說明理由。

      提問:1、本題的⊿ABC是一個一般三角形,BD將此三角形分割成了兩個等腰三角形,若將題目改為“已知⊿ABC中∠A=100°,∠ABC=60°”你能畫直線,將此三角形分割成兩個等腰三角形嗎?

      提示:(1)能否過兩個頂點畫直線(否定)

      (2)不過任何頂點畫直線?(過兩邊則一為三角形另一個為四邊形,否定)

     。3)能否經(jīng)過最小角的頂點畫直線?(否定)

      結論一:過三角形一個頂點畫直線,保留最小角。

      2、是不是所有的三角形都可以分成兩個等腰三角形?如果不是,則要滿足什么條件?

     。ǘ┨剿鹘涣,獲得新知

      如圖,△ADC是等腰三角形,延長AD到B,如果假定△BCD也是等腰三角形,則有以下三種情況,即(1)BD=DC;(2)CD=BC;(3)BD=BC.

      下面分別加以討論.

      (1)如果BD=DC,則有∠B=∠BCD.

      又因為AD=DC,所以∠A=∠ACD.

      所以∠A+∠B+∠ACB=180°

      所以2∠ACB=180°,∠ACB=90°.

      所以這個三角形必定是直角三角形.即直角三角形一定可以被分割成兩個等腰三角形。

     。2)如果CD=BC,設∠A=α,如圖因為AD=DC,所以∠ACD=α,∠BDC=∠A+∠ACD=2α,而因為CD=BC,所以∠B=∠BDC=2α,所以∠B=2∠A.

      所以這個三角形必定有一個角是另一個的2倍.

     。3)如果BD=BC,設∠A=α,如圖同上推得∠BDC=2α.

      因為BD=BC,所以∠BCD=∠BDC=2α,

      所以∠ACB=∠ACD+∠DCB=α+2α=3α,即∠ACB=3∠A.

      所以這個三角形必定有一個角是另一個的3倍.

      結論二:一個任意三角形具備下列三個條件之一就可以被分割成兩個等腰三角形.:

      ①一個角是90°,

      ②一個角是另一個角的2倍,

      ③一個角是另一個角的3倍,

      三.嘗試實踐

      給定一張等腰三角形紙片,剪一刀后,被分成兩個等腰三角形紙片,這個原等腰三角形的每個內角角是幾度?把所有符合要求的等腰三角形盡可能的列舉出來。

      分析:分類(1)頂角比底角大時,經(jīng)過等腰三角形頂角的頂點畫直線(保留最小角原則)

      1.BD=AD=DC時又AB=AC。

      ∴∠BAC=90°

      ∠ABC=∠ACB=45°

      2.(一個角是另一個角的3倍)BD=AD,DC=AC,且AB=AC。

      ∴∠BAC=108°

      ∠ABC=∠ACB=36°

     。2)當?shù)捉潜软斀谴髸r,經(jīng)過底角頂點畫直線

      3.(一個角是另一個角的2倍),BC=BE且BE=AE,AB=AC。

      ∴∠BAC=36°∠ABC=∠ACB=72°

      4.(一個角是另一個角的3倍),BC=CE且BE=AE,AB=AC。

      ∴∠BAC=∠ABC=∠ACB=

      四、小結:

      1.進一步探究把一個一般的三角形分成兩個等腰三角形的條件和思路;滿足其中三個條件之一的三角形才可以被分成兩個等腰三角形。

      2.利用一般三角形所具有的條件解決特殊三角形的問題。

      五、作業(yè)

      試一試

      1、已知⊿ABC中∠A=120°,∠ABC=40°試用一條直線將此三角形分割成兩個等腰三角形。

      2、將一個等邊三角形分割成四個等腰三角形(畫出分割線,標上必要的符號)

      引入課題,是許多同仁熱衷研究的內容,我認為,與其生搬硬套不如開門見山,利用學生已有的記憶,運用曾經(jīng)出現(xiàn)過的例題

      3,以考核學生的記憶力和快速的反應能力,激發(fā)學生快速進入角色,興致盎然,本題的計算也基本上復習了本課需要的幾個重要定理的同時也通過此題的結論給學生一個直觀的分割三角形的形象,變式引出后面的內容。

      此處主要解決怎么畫的問題,也為后面解決求等腰三角形各個內角度數(shù)時解決怎么畫的打下伏筆。

      本題以老師引導到為主。由共同探討,一可以減少時間,二可以降低難度,也為后面學生的自主探討積累經(jīng)驗,得出結論并掌握。

      自然轉折,符合常理。由問題2將本節(jié)課盲目嘗試分割等腰三角形轉化為有選擇的判斷怎樣的三角形可以分割成兩個等腰三角形,在有目的的進行分割,從而過渡到第二部分教學。

      數(shù)形結合,利用圖形找到三角形內角之間的關系。得出第一類三角形形狀是直角三角形,有時間的話,這個結論可以放課后討論驗證它的正確性。

      有了第一種探究,第二第三種探究結論就可以讓學生與老師互動合作探究,很快得出結論,學生因為有了經(jīng)驗,自然就有了興趣,更為后面等腰三角形分割,積累了第二個必不可少的經(jīng)驗。

      最后得出的結論,可以幫助學生初步判斷具備什么條件的三角形可以分割成兩個等腰三角形,然后由一般到特殊,體現(xiàn)思路的一般規(guī)律,也順利的引出后面的實踐內容。

      小組合作,讓接受能力強的學生帶動學能相對薄弱的同學,共同完成,共同進步。

      一般三角形畫線,得到的是角和角之間的關系,加上新的條件,就可以具體計算角的度數(shù),因此此處的難點就比較順當?shù)慕鉀Q了分割等腰三角形成兩個等腰三角形,可以綜合使用并驗證之前得到的兩個結論,加強了學生解決問題的能力,使學生更深刻的掌握知識。

      此處發(fā)現(xiàn)了教學參考上一個錯誤:BE=EC是不對的及時小結,使學生及時反思,互相提醒,讓更多的學生最大程度記住本課的知識要點。

      這兩個作業(yè),分別有兩種、四種分割結果,可以讓不同層次的學生體驗,發(fā)揮主觀能動性。

      六、板書

      課題:怎樣的三角形可以被分割成等腰三角形?

      結論一:分割原則:

      過三角形一個頂點畫直線,保留最小角

      結論二:一個任意三角形具備下列三個條件之一就

      可以被分割成兩個等腰三角形:

     、僖粋角是90°,

     、谝粋角是另一個角的2倍,

     、垡粋角是另一個角的3倍,

      七、反思補充

      新的課程標準要求教師根據(jù)自己的學生合理選擇教學素材、安排教學內容,作為老師,既要尊重教材,又要挖掘教材,加入了本課一般三角形滿足什么條件可以被分割成等腰三角形的一般規(guī)律,以找出一些課本之外的共性的東西,提高學生的好奇心和學習的積極性。

      在學習合作的教、學過程中,我注重及時的肯定學生的點點創(chuàng)新和智慧的火花,例如“探索交流,獲得新知”中,當一個三角形是等腰三角形確定之后,另一個三角形是等腰三角形,邊與邊之間的相等有三種情況,只要有學生提出,就大力贊賞以此作為激勵學生,注重學習過程的評價,讓學生在學習中感悟、體驗數(shù)學課堂的神奇。

      本人愚見,若有不當之處歡迎各位專家評委批評指正,謝謝!

      分割等腰三角形的說課稿2

      一、教材分析

      本探究活動是繼等腰三角形性質、判定之后探索能分割成兩個等腰三角形的條件的.內容。學習等腰三角形,離不開線段的相等和角相等,《分割等腰三角形》將加深同學們對等腰三角形地認識,是等腰三角形內容的延續(xù)和拓展。同時,將進一步豐富學生的數(shù)學活動經(jīng)驗,促進學生觀察、分析、歸納、概括的能力。

      二、學生起點分析

      七年級下學期的學生,從年齡特點看:他們好奇心強,思維活躍,喜歡動手操作,厭倦枯燥乏味的傳統(tǒng)教學;從知識儲備上看:他們已經(jīng)掌握了三角形、等腰三角形有關知識,如三角形內角和、等腰三角形的性質、等腰三角形的判定等等;從技能水平上看:他們已經(jīng)初步具有自主探索能力、合作交流能力。

      三、教學目標及重難點

      1、經(jīng)歷可以分割成兩個等腰三角形的條件的探索過程,培養(yǎng)探索精神和合情推理能力;

      2、在活動中,體會知識的運用和數(shù)學思考的方法;

      3、通過探索條件的實踐過程,體會數(shù)學推理的樂趣,增強合作交流意識。

      [教學重點]:可以分割成兩個等腰三角形的條件的探索過程。

      [教學難點]:作等腰三角分割成兩個等腰三角形的圖形。

      四、教與學的方式

      1、創(chuàng)設情境,激發(fā)興趣。

      2、小組活動,探求新知。

      3、梳理概括,形成結構。

      4、布置作業(yè)拓展延伸。

      授人以魚,不如“授人以漁”整節(jié)課中我始終貫徹“自主參與,自主探究,合作交流,自主構建”的教育理念,采用“探,疑、研,悟”等環(huán)節(jié)主體探究。讓學生在自主,合作,探究的濃厚氛圍中掌握知識,形成技能,培養(yǎng)感情。充分體現(xiàn)科學性和人文性的統(tǒng)一。

      五、教學流程設計

      1、創(chuàng)設情境,激發(fā)興趣。

      情景一、學生閱讀第120頁的《閱讀理解》

      這樣設計:可以讓學生通過閱讀理解,初步認識圖形分割的意義,培養(yǎng)數(shù)學閱讀的興趣和方法。也為后面的如何分割做了復習。

      情景二:在動聽的音樂聲中,大屏幕上循環(huán)播放生活中有關的等腰三角形的圖片。圖片最后出現(xiàn)等腰三角形花壇。

      教師拿出一個等腰三角形和一把剪刀,提問:誰來幫老師分割這個三角形花壇,使它變成兩個三角形以便可以種上不同的花?

      這樣設計:一是用他們熟悉或感興趣的問題情境引出學習主題,激發(fā)了學生探究知識的欲望,能夠較好地調動學生的學習興趣。二是進一步體味數(shù)學就在我們身邊,生活中處處都有數(shù)學。

      學生上臺演示。這時,教師可以引導學生有兩種分割方法:一種是分割線經(jīng)過頂角頂點;一種是分割線經(jīng)過底角頂點。

      這樣設計:為后面的分類討論思想打下鋪墊

      2、小組活動,探求新知

      第一部分:教師追問:已知花壇的三個角分別為36°、72°、72°,你可以分割成兩個等腰三角形嗎?如果老師把三角形的三個內角改成20°、20°、140°,你還能分嗎?

      合作:小組合作設計兩個三角形,使這兩個三角形都可以被分割成兩個等腰三角形。

      學生展示圖片,講解分割思路。(教師反問:為何不從頂角的頂點分割?)

      歸納小結:當頂角小于底角時,分割線經(jīng)過底角的頂點,反之,頂角大于底角時,分割線經(jīng)過頂角的頂點。

      質疑:任何三角形都能被分割成兩個等腰三角形嗎?

      這樣設計:從特殊的三角形出發(fā),加上學生對這個三角形比較熟悉,學生比較好操作,再到一般三角形,從而產(chǎn)生質疑:不是所有的等腰三角形都可以分成兩個等腰三角形,起了承上啟下的作用。

      第二部分:探索能分割成兩個等腰三角形的這個等腰三角形每個內角的關系?

      學生動手畫頂角分別是銳角、直角、鈍角的等腰三角。

      這樣設計:讓學生感知等腰三角形的多樣性,為分類討論思想打下鋪墊

      設底角為X度,小組合作作圖,并求出頂角的度數(shù)(X的代數(shù)式表示):第一、二組研究分割線經(jīng)過頂角的頂點的情況,后兩組研究分割線經(jīng)過底角的頂點的情況。

      這樣設計:是讓學生親歷科學發(fā)現(xiàn)的全過程,初步掌握研究性學習的學習方法。

      通過作圖求解,學生可以求出:頂角是底角的2倍、3倍、倍。對于倍,教師適當引導。

      第三部分:探索能分割成兩個等腰三角形的這個等腰三角形每個內角是幾度?學生根據(jù)內角和180度,求出角度。

      3、梳理概括,形成結構

      知識:分割成兩個等腰三角形的條件和方法;體驗:探究活動中的感悟。教師適當引導補充,并對學生的表現(xiàn)適當評價,給予鼓勵。

      4、布置作業(yè)拓展延伸

      分層作業(yè):必做題:把一個角為36°的等腰三角形分成4個等腰三角形。

      選做題:把角度分別20°、20°、140°等腰三角形分成三個等腰三角形。

      這樣設計:一是想以動手操作開始,再以動手操作結束,使課堂教學渾然一體;二是讓學習從課上走到課下,讓一種學法得以構建,讓一種思想得以延續(xù)。

      六、教學反思:

      我努力給學生創(chuàng)造自主探索、合作交流的舞臺,無論環(huán)節(jié)設計,還是作業(yè)的安排,都關注了學生的個體差異,注重了學生的數(shù)學體驗。通過操作、觀察、質疑、驗證、深化等自主探索活動。豐富知識、提升能力、獲得體驗。使學生初步具有自主學習之法、終身學習之愿、快樂學習之情。

    【分割等腰三角形的說課稿模板】相關文章:

    說課稿模板說課稿范文11-08

    《散步》的說課稿模板10-29

    散步的說課稿模板10-29

    巨人的花園說課稿模板10-16

    體育籃球的說課稿模板08-01

    《大象的耳朵》說課稿模板07-13

    《濟南的冬天》說課稿模板10-21

    《散步》說課稿模板10-29

    《背影》說課稿模板07-18