久久综合国产中文字幕,伊人久久大香线蕉一区,夜色福利少妇专区,亚洲日本va中文字带亚洲

    我要投稿 投訴建議

    我的自畫像四年級作文400字

    時間:2024-06-20 17:40:34 四年級 我要投稿
    • 相關(guān)推薦

    我的自畫像四年級作文400字

      在平凡的學(xué)習(xí)、工作、生活中,大家一定都接觸過作文吧,作文是經(jīng)過人的思想考慮和語言組織,通過文字來表達(dá)一個主題意義的記敘方法。你寫作文時總是無從下筆?以下是小編整理的我的自畫像四年級作文400字,歡迎閱讀,希望大家能夠喜歡。

    我的自畫像四年級作文400字

    我的自畫像四年級作文400字1

      1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。

      2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

      3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

      4.圓是定點的距離等于定長的點的集合。

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合;圓的外部可以看作是圓心的距離大于半徑的點的集合。

      6.不在同一直線上的三點確定一個圓。

      7.垂徑定理垂直于弦的.直徑平分這條弦并且平分弦所對的兩條弧。

      推論1:

     、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;

     、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧;

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

      推論2:圓的兩條平行弦所夾的弧相等。

      8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      9.定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角。

      10.經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

      11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

      12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。

      13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

      14.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

      15.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角。

      16.如果兩個圓相切,那么切點一定在連心線上。

      17.

     、賰蓤A外離d>R+r

      ②兩圓外切d=R+r

     、蹆蓤A相交d>R-r)

     、軆蓤A內(nèi)切d=R-r(R>r)

     、輧蓤A內(nèi)含d=r)

      18.定理把圓分成n(n≥3):

      ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

     、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

      19.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。

      20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

      21.內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。

      22.定理一條弧所對的圓周角等于它所對的圓心角的一半。

      23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

      24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

    我的自畫像四年級作文400字2

      初中數(shù)學(xué)例題的知識點梳理

      有理數(shù)的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。

      合并同類項:合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

      去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負(fù)號,去、添括號都變號。

      恒等變換:兩個數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

      平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

      完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

      因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細(xì)看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

      “代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括弧(小—中—大)

      單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進(jìn)行同級(運)算,指數(shù)運算降級(進(jìn))行。

      一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時,不等號改向別忘了。

      一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

      一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,。~)于(吃)取中間。

      分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。

      分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

      最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。

      特殊點坐標(biāo)特征:坐標(biāo)平面點(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個象限分前后;X軸上y為0,x為0在Y軸。

      象限角的'平分線:象限角的平分線,坐標(biāo)特征有特點,一、三橫縱都相等,二、四橫縱確相反。

      平行某軸的直線:平行某軸的直線,點的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點的橫坐標(biāo)仍照舊。

      對稱點坐標(biāo):對稱點坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負(fù)號;原點對稱最好記,橫縱坐標(biāo)變符號。

      自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

      函數(shù)圖像的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯不了”。

      一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)。

      二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點和交點,它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達(dá)能互換。

      反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點,雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠(yuǎn)與軸不沾邊。

      巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:

      正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

      三角函數(shù)的增減性:正增余減。

      特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

      數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

      平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。

      梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

      添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

      圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補(bǔ)記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。

      學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

      1、把答案蓋住看例題

      例題不能帶著答案去看,不然會認(rèn)為自己就是這么,其實自己并沒有理解透徹。

      所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

      經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

      2、研究每題都考什么

      數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

      3、錯一次反思一次

      每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

      學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

      4、分析試卷總結(jié)經(jīng)驗

      每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進(jìn)行分類。

      數(shù)學(xué)解題方法分別有哪些

      1、配方法

      所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

      2、因式分解法

      因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

      3、換元法

      替代方法是數(shù)學(xué)中一個非常重要和廣泛使用的解決問題的.方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

      4、判別式法與韋達(dá)定理

      一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

      韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

      5、待定系數(shù)法

      在解決數(shù)學(xué)問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

      6、構(gòu)造法

      在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識相互滲透,有助于解決問題。

      數(shù)學(xué)經(jīng)常遇到的問題解答

      1、要提高數(shù)學(xué)成績首先要做什么?

      這一點,是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識學(xué)起。不少同學(xué)覺得基礎(chǔ)知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實。

      2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

      對于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

      3、是否要采用題海戰(zhàn)術(shù)?

      方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。

      4、做題總是粗心怎么辦?

      很多學(xué)生成績不好,會說自己是因為粗心導(dǎo)致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識不牢、沒有清晰的解題思路、計算能力不強(qiáng)。因此在平時的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點,所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。

    我的自畫像四年級作文400字3

      一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R

      在初中數(shù)學(xué)教學(xué)中,重點是對學(xué)生的創(chuàng)新精神和實踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識,使數(shù)學(xué)知識在自己的頭腦中根深蒂固,各類知識點在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養(yǎng)。歸納意識的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對知識的'理解能力。

      初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對知識點的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識,還應(yīng)該學(xué)習(xí)書本以外的知識,從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識有機(jī)結(jié)合起來,使學(xué)生可以大膽創(chuàng)新。

      很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們在大量的題海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。

      二、在交流中歸納知識點

      在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識。溝通和交流不僅僅在語言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問題中,常常會遇到一些問題,學(xué)生自己探究會陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。

      為了切實在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識,老師可以將班級內(nèi)的學(xué)生分成幾個不同的小組,組內(nèi)的同學(xué)可以通過合作的方式,對知識點進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。

      例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時間,讓他們互相幫助,在溝通中對知識點進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個解,那么函數(shù)與數(shù)軸會有兩個交點,如果方程只有一個解,那么函數(shù)與數(shù)軸只有一個交點,如果方程沒有解,那么函數(shù)與數(shù)軸沒有交點。學(xué)生通過分組討論的方式得到結(jié)論,通過歸納,學(xué)生對二次函數(shù)知識點的印象非常深刻。

      三、學(xué)會正確歸納

      在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識錯綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實提升學(xué)生的數(shù)學(xué)成績。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對知識點進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會將知識點混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯誤的習(xí)題讓學(xué)生總結(jié)。

      例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會將重點內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點進(jìn)行總結(jié),從而加深對這部分知識的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時間進(jìn)行歸納。

      在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會歸納,在學(xué)習(xí)中就會如魚得水,在考試中取得好成績。

      四、在反思中完成知識點的歸納

    我的自畫像四年級作文400字4

      一、圓

      1、圓的有關(guān)性質(zhì)

      在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

      由圓的意義可知:

      圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

      就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

      圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

      圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

      圓心相同,半徑不相等的兩個圓叫同心圓。

      能夠重合的兩個圓叫等圓。

      同圓或等圓的半徑相等。

      在同圓或等圓中,能夠互相重合的弧叫等弧。

      二、過三點的圓

      l、過三點的圓

      過三點的圓的作法:利用中垂線找圓心

      定理不在同一直線上的三個點確定一個圓。

      經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的'圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

      2、反證法

      反證法的三個步驟:

     、偌僭O(shè)命題的結(jié)論不成立;

     、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

     、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

      例如:求證三角形中最多只有一個角是鈍角。

      證明:設(shè)有兩個以上是鈍角

      則兩個鈍角之和>180°

      與三角形內(nèi)角和等于180°矛盾。

      ∴不可能有二個以上是鈍角。

      即最多只能有一個是鈍角。

      三、垂直于弦的直徑

      圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

      垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

      推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

      弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

      平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

      推理2:圓兩條平行弦所夾的弧相等。

      四、圓心角、弧、弦、弦心距之間的關(guān)系

      圓是以圓心為對稱中心的中心對稱圖形。

      實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

      頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

      定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

      推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

      五、圓周角

      頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

      推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

      推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

      推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

      由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

      六、圓的判定性質(zhì)

      1.不在同一直線上的三點確定一個圓。

      2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1

     、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2 圓的兩條平行弦所夾的弧相等

      3.圓是以圓心為對稱中心的中心對稱圖形

      4.圓是定點的距離等于定長的點的集合

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

      6.圓的外部可以看作是圓心的距離大于半徑的點的集合

      7.同圓或等圓的半徑相等

      8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

      10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      11定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它 的內(nèi)對角

      12.①直線L和⊙O相交 d

     、谥本L和⊙O相切 d=r

     、壑本L和⊙O相離 dr

      13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

      15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

      16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

      18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

      19.如果兩個圓相切,那么切點一定在連心線上

      20.①兩圓外離 dR+r ②兩圓外切 d=R+r

      ③.兩圓相交 R-rr)

     、.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)

    我的自畫像四年級作文400字5

      初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

      圓心角

      在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

      推理過程

      根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。

      因此,弧ab與弧a'b'重合,ab與a'b'重合。即

      弧ab=弧a'b',ab=a'b'。

      則得到上面定理。

      同樣還可以得到:

      在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

      在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

      所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的.其余各組量也相等。

      圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。

    我的自畫像四年級作文400字6

      1、圓是定點的距離等于定長的點的集合

      2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

      3、圓的外部可以看作是圓心的距離大于半徑的點的集合

      4、同圓或等圓的半徑相等

      5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的`點的軌跡,是這個角的平分線

      8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

      9、定理不在同一直線上的三點確定一個圓。

      10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      12、推論2:圓的兩條平行弦所夾的弧相等

      13、圓是以圓心為對稱中心的中心對稱圖形

      14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

      16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

      17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

      20、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

      21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

      22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點25、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

      26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

      27、圓的外切四邊形的兩組對邊的和相等

      28、弦切角定理:弦切角等于它所夾的弧對的圓周角

      29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

      32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

      33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

      34、如果兩個圓相切,那么切點一定在連心線上

      35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)

      36、定理:相交兩圓的連心線垂直平分兩圓的公共弦

      37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

      38、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      39、正n邊形的每個內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長

      43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長計算公式:L=n兀R/180

      45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)

    我的自畫像四年級作文400字7

      基本定理

      1、過兩點有且只有一條直線

      2、兩點之間線段最短

      3、同角或等角的補(bǔ)角相等

      4、同角或等角的余角相等

      5、過一點有且只有一條直線和已知直線垂直

      6、直線外一點與直線上各點連接的所有線段中,垂線段最短

      7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內(nèi)錯角相等,兩直線平行

      11、同旁內(nèi)角互補(bǔ),兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內(nèi)錯角相等

      14、兩直線平行,同旁內(nèi)角互補(bǔ)

      15、定理xxx兩邊的和大于第三邊

      16、推論xxx兩邊的差小于第三邊

      17、xxx內(nèi)角和定理xxx三個內(nèi)角的和等于180°

      18、推論1直角xxx的兩個銳角互余

      19、推論2 xxx的一個外角等于和它不相鄰的兩個內(nèi)角的和

      20、推論3 xxx的一個外角大于任何一個和它不相鄰的內(nèi)角

      21、全等xxx的對應(yīng)邊、對應(yīng)角相等

      22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個xxx全等

      23、角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個xxx全等

      24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個xxx全等

      25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個xxx全等

      26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角xxx全等

      27、定理1在角的平分線上的點到這個角的兩邊的距離相等

      28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點的集合

      30、等腰xxx的性質(zhì)定理等腰xxx的兩個底角相等(即等邊對等角)

      31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊

      32、等腰xxx的頂角平分線、底邊上的.中線和底邊上的高互相重合

      33、推論3等邊xxx的各角都相等,并且每一個角都等于60°

      34、等腰xxx的判定定理如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      35、推論1三個角都相等的xxx是等邊xxx

      36、推論2有一個角等于60°的等腰xxx是等邊xxx

      37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

      38、直角xxx斜邊上的中線等于斜邊上的一半

      39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

      40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

      42、定理1關(guān)于某條直線對稱的兩個圖形是全等形

      43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

      44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

      45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

      46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理如果xxx的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個xxx是直角xxx

      48、定理四邊形的內(nèi)角和等于360°

      49、四邊形的外角和等于360°

      50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

    我的自畫像四年級作文400字8

      1有理數(shù)加法法則

      1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

      2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

      3、一個數(shù)與0相加,仍得這個數(shù)。

      2有理數(shù)加法的運算律

      1、加法的交換律:a+b=b+a;

      2、加法的結(jié)合律:(a+b)+c=a+(b+c)

      3有理數(shù)減法法則

      減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)

      4有理數(shù)乘法法則

      1、兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

      2、任何數(shù)同零相乘都得零;

      3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。

      5有理數(shù)乘法的運算律

      1、乘法的交換律:ab=ba;

      2、乘法的結(jié)合律:(ab)c=a(bc);

      3、乘法的分配律:a(b+c)=ab+ac

      6單項式

      只含有數(shù)字與字母的積的代數(shù)式叫做單項式。

      注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。

      7多項式

      1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。

      2、同類項所有字母相同,并且相同字母的'指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。

      8中心對稱

      1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

      2、心對稱的兩條基本性質(zhì):

     。1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

      (2)關(guān)于中心對稱的兩個圖形是全等圖形。

      3、中心對稱圖形

      把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

    我的自畫像四年級作文400字9

      代數(shù)部分:有理數(shù)、無理數(shù)、實數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

      幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

      1、實數(shù)的分類

      有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......

      無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,—,0.1010010001......(兩個1之間依次多1個0)。

      實數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。

      2、無理數(shù)

      在理解無理數(shù)時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來有四類:

      (1)開方開不盡的數(shù),如等;

     。2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

     。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001......等;

      (4)某些三角函數(shù),如sin60o等。

      注意:判斷一個實數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn)。

      3、非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

      常見的非負(fù)數(shù)有:

      性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。

      4、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

      解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。

     、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸("三要素")。

      ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

     、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。

      作用:A、直觀地比較實數(shù)的大。籅、明確體現(xiàn)絕對值意義;C、建立點與實數(shù)的一一對應(yīng)關(guān)系。

      5、相反數(shù)

      實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的'兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

      即:(1)實數(shù)的相反數(shù)是。

    我的自畫像四年級作文400字10

      二元一次方程(組)

      1、二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

      2、二元一次方程組:含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

      3、二元一次方程組的解:二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

      4、二元一次方程組的解法。

     。1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉,主要步驟是,將其中一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代人另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代人法。

     。2)加減消元法:通過方程兩邊分別相加(減)消去其中一個未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡稱加減法。

      提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。

      平面直角坐標(biāo)系

      下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

      平面直角坐標(biāo)系

      平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

      平面直角坐標(biāo)系的要素:

      ①在同一平面

     、趦蓷l數(shù)軸

     、刍ハ啻怪

      ④原點重合

      三個規(guī)定:

     、僬较虻腵規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

     、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

      ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

      通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

      點的坐標(biāo)的性質(zhì)

      建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

      對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

      一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

      希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

      因式分解的一般步驟

      如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

      注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

      相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

      因式分解

      因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

      因式分解要素:

      ①結(jié)果必須是整式

     、诮Y(jié)果必須是積的形式

      ③結(jié)果是等式

      因式分解與整式乘法的關(guān)系:m(a+b+c)

      公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

      公因式確定方法:

     、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。

      ②相同字母取最低次冪

     、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

      提取公因式步驟:

      ①確定公因式。

     、诖_定商式

     、酃蚴脚c商式寫成積的形式。

      分解因式注意;

     、俨粶(zhǔn)丟字母

      ②不準(zhǔn)丟常數(shù)項注意查項數(shù)

     、垭p重括號化成單括號

     、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

      ⑤相同因式寫成冪的形式

     、奘醉椮(fù)號放括號外

     、呃ㄌ杻(nèi)同類項合并。

    我的自畫像四年級作文400字11

      一、平移變換:

      1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

      2、性質(zhì):

     。1)平移前后圖形全等;

     。2)對應(yīng)點連線平行或在同一直線上且相等。

      3、平移的作圖步驟和方法:

     。1)分清題目要求,確定平移的方向和平移的距離。

     。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點。

     。3)沿一定的方向,按一定的距離平移各個關(guān)健點。

     。4)連接所作的各個關(guān)鍵點,并標(biāo)上相應(yīng)的字母。

      (5)寫出結(jié)論。

      二、旋轉(zhuǎn)變換:

      1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。

      說明:

     。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

     。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

     。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

     。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的`。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

      2、性質(zhì):

      (1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;

     。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

     。3)旋轉(zhuǎn)前、后的圖形全等。

      3、旋轉(zhuǎn)作圖的步驟和方法:

     。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

     。2)找出圖形的關(guān)鍵點;

     。3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;

     。4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。

      說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

      4、常見考法

     。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

      (2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。

      誤區(qū)提醒

      (1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

      (2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

    我的自畫像四年級作文400字12

      ∴當(dāng)x1時函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

      4],求實數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

      解:(1)f(x)的'對稱軸是x可得函數(shù)圖像開口向上

      2(a1)21a,且二次項系數(shù)為1>0

      1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

      4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

      例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

     。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對稱軸為x(3x)(3x)23

      b3可得b62f(x)x26x2(x3)211

      而f(x)的圖像與x軸交點(x1,0)、(x2,0)關(guān)于對稱軸x3對稱

      x1x223,可得x1x26

      第三章第32頁由二次項系數(shù)為1>0,可知拋物線開口向上又134,132,431

      ∴依二次函數(shù)的對稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

     。á簦┙虒W(xué)后記:

      第三章第33頁

      擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識點歸納

      學(xué)大教育

      初中數(shù)學(xué)函數(shù)板塊的知識點總結(jié)與歸類學(xué)習(xí)方法

      初中數(shù)學(xué)知識大綱中,函數(shù)知識占了很大的知識體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個模塊知識,會做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績自然上高峰,同時,函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

      一、一次函數(shù)

      1.定義:在定義中應(yīng)注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

    我的自畫像四年級作文400字13

      1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

      2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

     、屏庑蔚乃臈l邊都相等;

     、橇庑蔚膬蓷l對角線互相垂直,并且每一條對角線平分一組對角。

     、攘庑问禽S對稱圖形。

      提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關(guān)系,即邊長的平方等于對角線一半的平方和。

      3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

      4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

      5、公因式:一個多項式每項都含有的.公共的因式,叫做這個多項式各項的公因式。

      6、公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

      7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

      8、平方根表示法:一個非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號a。a叫被開方數(shù)。

      9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

      10、平方根性質(zhì):①一個正數(shù)的平方根有兩個,它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個數(shù)的平方根的運算,叫做開平方。

      11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個數(shù)不同、取值范圍不同。

      12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

      13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。

      14、求正數(shù)a的算術(shù)平方根的方法;

      完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

      求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

    我的自畫像四年級作文400字14

      1.不在同一直線上的三點確定一個圓。

      2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

     、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2 :圓的兩條平行弦所夾的弧相等

      3.圓是以圓心為對稱中心的中心對稱圖形。

      4.圓是定點的距離等于定長的點的集合。

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。

      6.圓的外部可以看作是圓心的距離大于半徑的點的集合。

      7.同圓或等圓的半徑相等。

      8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

      9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等。

      10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      11定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它 的內(nèi)對角。

      12.①直線L和⊙O相交 d 、谥本L和⊙O相切 d=r  ③直線L和⊙O相離 d>r

      13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

      14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑。

      15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。

      16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心。

      17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角。

      18.圓的'外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角。

      19.如果兩個圓相切,那么切點一定在連心線上。

      20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr)  ④.兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

      21.定理 相交兩圓的連心線垂直平分兩圓的公共弦。

      22.定理 把圓分成n(n≥3): 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

      23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。

      24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n。

      25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形。

      26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長。

      27.正三角形面積√3a/4 a表示邊長。

      28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。

      29.弧長計算公式:L=n兀R/180。

      30.扇形面積公式:S扇形=n兀R^2/360=LR/2。

      31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)。

      32.定理 一條弧所對的圓周角等于它所對的圓心角的一半。

      33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

      34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑。

      35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r。

      1.直接法:根據(jù)選擇題的題設(shè)條件,通過計算、推理或判斷,最后得到題目的所求。

      2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);

      在解這類選擇題時,可以考慮從取值范圍內(nèi)選取某幾個特殊值,代入原命題進(jìn)行驗證,然后淘汰錯誤的,保留正確的。

      3.淘汰法:把題目所給的四個結(jié)論逐一代回原題的題干中進(jìn)行驗證,把錯誤的淘汰掉,直至找到正確的答案。

      4.逐步淘汰法:如果我們在計算或推導(dǎo)的過程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;

      每走一步都與四個結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個錯誤的結(jié)論就被全部淘汰掉了。

      5.數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

      使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解題思路,使問題得到解決。

      常用的數(shù)學(xué)思想方法

      1.數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;

      使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。

      2.聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。

      在解題時,如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡。

      如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動與靜的轉(zhuǎn)化等等。

      3.分類討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對象性質(zhì)的差異,分各種不同情況予以考查;

      這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時也是一種重要的解題策略。

      4.待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。

      為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。

      5.配方法:就是把一個代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。

      配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問題,都有重要的作用。

      6.換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進(jìn)一步解決問題的一種方法。

      換元法可以把一個較為復(fù)雜的式子化簡,把問題歸結(jié)為比原來更為基本的問題,從而達(dá)到化繁為簡,化難為易的目的。

      7.分析法:在研究或證明一個命題時,又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個條件的成立還不顯然;

      則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”

      8.綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種思維過程通常稱為“由因?qū)Ч?/p>

      9.演繹法:由一般到特殊的推理方法。

      10.歸納法:由一般到特殊的推理方法。

    我的自畫像四年級作文400字15

      一、初中數(shù)學(xué)基本概念

      1.方程:含有未知數(shù)的等式叫做方程。

      2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

      3.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

      4.二元一次方程組:由兩個二元一次方程組成的方程組。

      5.一元二次方程:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

      6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

      7.一元二次方程的根:一元二次方程的解。

      8.一元二次方程的判別式:當(dāng)a是正數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數(shù)根;當(dāng)a是負(fù)數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數(shù)根;當(dāng)a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數(shù)根。

      9.函數(shù):在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的函數(shù),x叫做自變量。

      10.一次函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的一次函數(shù)。

      11.正比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。

      12.反比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。

      13.平行四邊形:在同一個平面內(nèi)兩組對角分別平行的四邊形叫做平行四邊形。

      14.矩形:有一個內(nèi)角是直角的平行四邊形叫做矩形。

      15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

      16.正方形:四邊相等的矩形叫做正方形。

      17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

      18.三角形:在同一個平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      19.中線:連接一個頂點和它對邊的中點的線段叫做中線。

      20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。

      21.角平分線:三角形的一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。

      22.中位線:連接三角形兩邊中點的線段叫做中位線。

      23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。

      24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。

      25.配方法:把一元二次方程的常數(shù)項移到方程的右邊,兩邊加上一次項系數(shù)的一半的平方,再用右邊的.式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。

      26.公式法:用求根公式解一元二次方程的方法。

      27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。

      二、初中數(shù)學(xué)基本運算

      1.整式:單項式和多項式的統(tǒng)稱。

      2.單項式:由數(shù)字和字母的積組成的代數(shù)式叫做單項式。單獨的一個數(shù)字或字母也叫做單項式。

      3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數(shù)

    【我的自畫像四年級作文400字】相關(guān)文章:

    我的自畫像作文07-09

    我的“自畫像”作文05-03

    我的自畫像作文07-11

    (精選)我的自畫像作文07-13

    我的自畫像作文(精選)08-10

    我的自畫像作文【經(jīng)典】09-29

    我的”自畫像“作文05-07

    我的自畫像作文(經(jīng)典)11-18

    [經(jīng)典]我的自畫像作文07-30

    我的自畫像作文04-28