- 相關(guān)推薦
《立方根》教學(xué)設(shè)計(jì)(通用10篇)
作為一名專為他人授業(yè)解惑的人民教師,總不可避免地需要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是對(duì)學(xué)業(yè)業(yè)績(jī)問題的解決措施進(jìn)行策劃的過程。那么教學(xué)設(shè)計(jì)應(yīng)該怎么寫才合適呢?下面是小編整理的《立方根》教學(xué)設(shè)計(jì),希望能夠幫助到大家。
《立方根》教學(xué)設(shè)計(jì) 篇1
一、教學(xué)目標(biāo):
1、通過實(shí)例經(jīng)歷立方根概念的產(chǎn)生過程。
2、了解立方根的概念,會(huì)用根號(hào)表示。
3、了解開立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求立方根。
二、教學(xué)的重點(diǎn)和難點(diǎn):
重點(diǎn):;立方根的概念和開立方運(yùn)算。
難點(diǎn):例2第(2)題涉及兩種開方運(yùn)算的混合運(yùn)算,基礎(chǔ)較差的學(xué)生容易混淆,是本節(jié)課的難點(diǎn)。
三、教學(xué)過程:
、鍎(chuàng)設(shè)情境、引入新知
我以學(xué)生們比較熟悉的魔方引入。
提出問題:
、 平常的生活中,同學(xué)們有玩過魔方嗎?
、 一個(gè)三階魔方第一層有多少個(gè)立方體?
、 它一共由多少個(gè)小立方體組成的?
、 由8個(gè)小立方體組成的是幾階魔方你知道嗎?64個(gè)小立方體?
引出立方根的定義。
、鎲l(fā)誘導(dǎo)、探究新知
1、立方根的定義:一般地,一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根,也叫做a的三次方根,
2、立方根的表示方法:3
a
根指數(shù)
根號(hào)
被開方數(shù)
3、讀做:三次根號(hào)
、缜谟趯(shí)踐、應(yīng)用新知
1、例1:求下列各數(shù)的立方根:
(1)125 (2) -27 (3) (4)- 0.064 (5) 0
師給出(1)(2)兩小題的解法步驟,(3)(4)(5)小題由學(xué)生板演之后:
觀察并思考:一個(gè)數(shù)的立方根的個(gè)數(shù)有幾個(gè)?
一個(gè)數(shù)的立方根的.符號(hào)與這個(gè)數(shù)的符號(hào)存在什么關(guān)系?
得出事實(shí):一個(gè)正數(shù)有一個(gè)正的立方根,一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根,零的立方根是零。
2、開立方的定義:求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方
3、探究平方根與立方根的異同點(diǎn)
正數(shù)零負(fù)數(shù)
1 0 -1
平方根
立方根
仔細(xì)看一看,大膽說一說:
不同點(diǎn): ①正數(shù)和負(fù)數(shù)的平方根與立方根的個(gè)數(shù)不同
②表示平方根和立方根的符號(hào)不同
相同點(diǎn): ①0的平方根、立方根都是0
、谇笃椒礁、立方根的過程都是一種逆運(yùn)算。
4、明辨是非
1.判斷下列說法是否正確,并說明理由:
(1) 的立方根是
(2)算術(shù)平方根和立方根都等于本身的數(shù)只有0
(3)-8的立方根是-2,但-8沒有平方根
(4) 4的平方根是±2,但4沒有立方根
(5)互為相反數(shù)的兩個(gè)數(shù)的立方根也互為相反數(shù)
注意:①舉例時(shí)要注意特殊數(shù):1,0,-1
、谂e例的數(shù)要有代表性
㈣提煉升華、鞏固新知
1、幫忙糾錯(cuò):
②由216個(gè)小立方體能組成幾階魔方呢?
、郯岩粋(gè)長(zhǎng)、寬、高分別為50cm,2cm,8cm的長(zhǎng)方體鐵塊溶化后鍛造成一個(gè)立方體鐵塊,問造成的立方體的棱長(zhǎng)是多少cm?(損耗忽略不計(jì))
㈤課堂小結(jié)、完善新知
我們可以提出哪些問題?
(1)它表示什么意思?
(2)計(jì)算的結(jié)果是多少?
……
、瓴贾米鳂I(yè):
(1)課堂作業(yè)本3.3
(2)課本剩余作業(yè)題
(3)提高題
《立方根》教學(xué)設(shè)計(jì) 篇2
教材分析
《立方根》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書人教版版八年級(jí)(上)第十三章《實(shí)數(shù)》第二節(jié).本節(jié)內(nèi)容安排了1個(gè)學(xué)時(shí)完成.主要是通過對(duì)立方根與平方根的比較與歸類,探索立方根的概念、計(jì)算和簡(jiǎn)單性質(zhì).因此,除了具體的知識(shí)技能(如知道一個(gè)數(shù)的立方根的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根,掌握立方根運(yùn)算,掌握求一個(gè)數(shù)的立方根的方法和技巧)外,還需要讓學(xué)生感受類比的思想方法,為今后的學(xué)習(xí)打下基礎(chǔ).
學(xué)情分析
在學(xué)習(xí)了平方根概念的基礎(chǔ)上學(xué)習(xí)立方根的概念,學(xué)生比較容易接受,因此教學(xué)重點(diǎn)放在立方根具有唯一性(實(shí)數(shù)范圍內(nèi))的討論上.在學(xué)生對(duì)數(shù)的立方根概念及其唯一性有了一定理解的基礎(chǔ)上,再提出數(shù)的立方根與數(shù)的平方根有什么區(qū)別,學(xué)生就容易解決問題.
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo)
1.了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.
2.會(huì)用立方運(yùn)算求一個(gè)數(shù)的立方根,了解開立方與立方互為逆運(yùn)算.
3.了解立方根的性質(zhì)----唯一性.
4.區(qū)分立方根與平方根的不同.
5.分清兩個(gè)互為相反數(shù)的立方根的關(guān)系,即
5.滲透特殊---一般的數(shù)學(xué)思想方法
過程與方法目標(biāo)
1.經(jīng)歷對(duì)立方根的探究過程,在探究中學(xué)會(huì)解決立方根的一些基本方法和策略.
2.在學(xué)習(xí)了平方根的基礎(chǔ)上,學(xué)生經(jīng)歷用類比的'方法學(xué)習(xí)立方根的有關(guān)知識(shí),領(lǐng)會(huì)類比思想.
3.通過對(duì)立方根性質(zhì)的探究,在探究中培養(yǎng)學(xué)生的逆向思維能力和分類討論的意識(shí).
情感與態(tài)度目標(biāo):
1.在立方根概念、符號(hào)、運(yùn)算及性質(zhì)的探究過程中,培養(yǎng)學(xué)生聯(lián)系實(shí)際、善于觀察、勇于探索和勤于思考的精神.
2. 學(xué)生通過對(duì)實(shí)際問題的解決,體會(huì)數(shù)學(xué)的實(shí)用價(jià)值.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):立方根的概念及求法.
難點(diǎn):立方根的求法,立方根與平方根的聯(lián)系及區(qū)別.
教學(xué)過程
本節(jié)內(nèi)容教學(xué)法為:類比法。
《立方根》教學(xué)設(shè)計(jì) 篇3
一,教學(xué)目標(biāo)
1.會(huì)用計(jì)算器求數(shù)的立方根.
2.通過用計(jì)算器求立方根,培養(yǎng)學(xué)生的類比思想,提高運(yùn)算能力;
3.利用計(jì)算器求立方根,使學(xué)生進(jìn)一步領(lǐng)會(huì)數(shù)學(xué)的轉(zhuǎn)化思想;
4.通過利用計(jì)算器求值體驗(yàn)現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學(xué)習(xí)、探索知識(shí)的興趣。
二.教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):用計(jì)算器求一個(gè)數(shù)的立方根的程序
教學(xué)難點(diǎn):準(zhǔn)確的用計(jì)算器求一個(gè)數(shù)的立方根
三.教學(xué)方法
啟發(fā)式
四.教學(xué)手段
計(jì)算器,實(shí)物投影儀
五.教學(xué)過程
前面我們學(xué)習(xí)了用計(jì)算器求一個(gè)數(shù)的平方根,現(xiàn)在我們回憶一下計(jì)算器的使用方法.如何利用計(jì)算器求一個(gè)數(shù)的平方根?操作步驟?
練習(xí):求下列各數(shù)的平方根:
。1)13; (2)23.45
在初一學(xué)習(xí)了用計(jì)算器求一個(gè)數(shù)的平方或立方的方法?(由學(xué)生回答操作過程,并對(duì)比兩者的差別與聯(lián)系)
對(duì)于用計(jì)算器求一個(gè)數(shù)的平方根的方法我們已經(jīng)熟悉了,那么如何用計(jì)算器器其一個(gè)數(shù)的立方根?與求平方根有何區(qū)別和練習(xí)?
對(duì)于求立方根和平方根的操作過程基本相同,主要差別是在開方的次數(shù)上,因此要注意其立方根時(shí)開方數(shù)是3。
例1.用計(jì)算器求
分析:求解時(shí)要用到 上方的鍵 ,因此要用到“2F”功能鍵轉(zhuǎn)換。
解:用計(jì)算器求 的步驟如下:
=5
小結(jié):從這道題刻一個(gè)觀察出用計(jì)算器求立方根和平方根十分類似,區(qū)別是在倒數(shù)第二步的按鍵將 改為改為 ,只是次數(shù)不同。
例2.用計(jì)算器求
解:用計(jì)算器求 的步驟如下:
≈12.26
小結(jié):由于計(jì)算器的結(jié)果較精確小數(shù)的位數(shù)較多,在遇到開方開不盡的'情況下,如無特殊說明,計(jì)算結(jié)果一律保留四個(gè)有效數(shù)字。
練習(xí):求下列各式的值
。1) ; (2) ; (3) ; (4)
(5) (6) (7)
(8) (9) (10)
例3.求下列各式中x的值(精確到0.01)
(1)
解:
用計(jì)算器求 的值:
。2)
解:
用計(jì)算器求 的值:
六.總結(jié)
今天學(xué)習(xí)了用計(jì)算器求一個(gè)數(shù)的立方根,求立方根的方法與平方根的方法類似,但要注意開方次數(shù)。做題要細(xì)心仔細(xì),嚴(yán)格按照步驟操作。
七.作業(yè)
A組1、2、3
八.板書
《立方根》教學(xué)設(shè)計(jì) 篇4
一、教學(xué)目標(biāo)
知識(shí)與技能
1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根
2、了解開立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根
過程與方法
1讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性
2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會(huì)立方與開立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。
情感態(tài)度與價(jià)值觀
通過立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。
二、重點(diǎn)難點(diǎn)
重點(diǎn)
立方根的概念和求法。
難點(diǎn)
立方根與平方根的區(qū)別,立方根的求法
三、學(xué)情分析
前面已經(jīng)學(xué)過了平方根的'知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識(shí)和新問題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。
四、教學(xué)過程設(shè)計(jì)
教學(xué)環(huán)節(jié)問題設(shè)計(jì)師生活動(dòng)備注
情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?
設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27.
因?yàn)?27,所以x=3.即這種包裝箱的邊長(zhǎng)應(yīng)為3m
歸納:
立方根的概念:
創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。
通過具體問題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?
因?yàn)椋ǎ,所?.125的立方根是()
因?yàn)椋ǎ?8的立方根是()
因?yàn)椋ǎ,所?0.125的立方根是()
因?yàn)椋ǎ,所?的立方根是()
一個(gè)正數(shù)有一個(gè)正的立方根
0有一個(gè)立方根,是它本身
一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根
任何數(shù)都有唯一的立方根
【總結(jié)歸納】
一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因?yàn)樗?
因?yàn),所?總結(jié):
利用開立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。
《立方根》教學(xué)設(shè)計(jì) 篇5
教學(xué)目的
1.通過實(shí)驗(yàn)經(jīng)歷立方根概念的產(chǎn)生的過程。
2.了解立方根的概念,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根。
3.了解開立方與立方互為逆運(yùn)算,能用立方運(yùn)算求某數(shù)的立方根。
4.通過性質(zhì)推導(dǎo)過程培養(yǎng)學(xué)生的類比思想。
教學(xué)重點(diǎn)
立方根的概念與開立方的運(yùn)算。
教學(xué)難點(diǎn)
涉及兩種開立方的運(yùn)算,學(xué)生易混淆。
教學(xué)過程
一、 情景創(chuàng)設(shè),引入課題
1.要做一個(gè)體積為27立方厘米的立方體模型,它的棱要多少長(zhǎng)?你是怎么知道的?
2.請(qǐng)同學(xué)們回憶一下,平方根是如何定義的?
3.平方根有哪些性質(zhì)?
二、師生互動(dòng),拓展新知
(通過類比的方法導(dǎo)出立方根的概念及開立方的定義)
1、你能否由平方根的定義說出立方根的定義呢?
立方根的`概念:
如果一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根。(也稱數(shù)a的三次方根。)用數(shù)學(xué)式子表示為:若x3=a,則x叫做a的立方根或三次方根。
。病⒘⒎礁谋硎痉椒ǎ
類似平方根的表示方法。數(shù)a的立方根我們用符號(hào)來表示,讀作“三次根號(hào)a”,其中a叫做被開方數(shù),3叫做根指數(shù),且不能省略,否則與平方根混淆。
開平方:求一個(gè)數(shù)的平方根的運(yùn)算,叫做開平方。
開立方:求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方
問:一個(gè)正數(shù)有幾個(gè)平方根,一個(gè)負(fù)數(shù)有幾個(gè)平方根?0呢?
一個(gè)正數(shù)有幾個(gè)立方根,負(fù)數(shù)、0呢
例1求下列各數(shù)的立方根:
。1)-8;(2)8;(3)-8/27;(4)0、216;(5)0(6)4。
解:略
3.練一練 :第78頁 1,2
4.立方根的性質(zhì):
。1)正數(shù)有一個(gè)正的立方根,(2)負(fù)數(shù)有一個(gè)負(fù)的立方根,(3)0的立方根是0。
例2求下列各式的值:
。1)(2)
解:略。
三、反饋練習(xí)
第78頁3
四、課時(shí)小結(jié)
我們?cè)趯W(xué)習(xí)立方根概念時(shí),應(yīng)對(duì)照平方根概念進(jìn)行。
2、平方根的性質(zhì)
。1)一個(gè)正數(shù)有兩個(gè)平方根,這兩個(gè)平方根互為相反數(shù)
。2)0的平方根還是0
(3)負(fù)數(shù)沒有平方根
立方根的性質(zhì):(1)正數(shù)的立方根還是正數(shù)
。2)0的平方根還是0
(3)負(fù)數(shù)的立方根還是負(fù)數(shù)
五、作業(yè)布置1.作業(yè)本
同步練習(xí)1
教學(xué)反思:
《立方根》教學(xué)設(shè)計(jì) 篇6
一、教材地位
《立方根》八年級(jí)數(shù)學(xué)上學(xué)期《實(shí)數(shù)》第二節(jié)《立方根》第一課時(shí)的內(nèi)容。立方根(1)的內(nèi)容,是在學(xué)習(xí)了算術(shù)平方根、平方根的有關(guān)概念的基礎(chǔ)上提出來的。本節(jié)從內(nèi)容上看與上一節(jié)平方根的內(nèi)容基本平行,主要研究立方根的概念和求法;從知識(shí)的展開順序上看也基本相同,本節(jié)也是先從具體的計(jì)算出發(fā)歸納給出立方根的概念,然后討論立方與開立方的互逆關(guān)系,研究立方根的特征。
二、好的地方
1、本節(jié)課,我能很順利的完成本節(jié)課的教學(xué),駕馭整個(gè)課堂,使用一些激勵(lì)性的語言,把整個(gè)課堂調(diào)動(dòng)的比較活躍,學(xué)生回答問題的積極性比較高,能到前面展示自己,并且表現(xiàn)的很好,得到成功的體驗(yàn),這也給學(xué)生樹立了自信心,對(duì)后面的學(xué)習(xí)更加積極,也更想表現(xiàn)自己。
2、本節(jié)課的課容量很大,在引導(dǎo)學(xué)生類比平方根的概念的基礎(chǔ)上,通過實(shí)際問題的引入,自己歸納出立方根的概念,經(jīng)過例1的教學(xué),學(xué)生進(jìn)一步理解概念;通過兩個(gè)探究,得到立方根的性質(zhì)和被開方數(shù)的取值范圍及立方根是它本身的數(shù)有1、—1和0,在學(xué)生掌握立方根的概念和性質(zhì)的基礎(chǔ)上做了大量的練習(xí),完成了書中的課后練習(xí)和課后習(xí)題的1、2、3。
3、通過我在課堂上的觀察、了解,通過學(xué)生做練習(xí)的表現(xiàn)和做題情況,通過班主任老師對(duì)坐在后面的后進(jìn)生的觀察反饋,知道學(xué)生對(duì)本節(jié)課的掌握還是不錯(cuò)的,達(dá)到了預(yù)定的教學(xué)目標(biāo)。第二天我又問了一部分學(xué)生對(duì)《立方根(1)》這節(jié)課的學(xué)習(xí)感覺怎么樣,都會(huì)嗎?學(xué)生也都反映都會(huì),聽的挺清楚,覺得挺簡(jiǎn)單的。后面的后進(jìn)生做的`練習(xí)也挺不錯(cuò)的,寫的都對(duì),上課還回答了好幾次問題,都說的挺棒的。
4、教學(xué)中我對(duì)例2的要求規(guī)定了三點(diǎn):先讀出下列各式,說明表示的意義,再求值。既鍛煉了學(xué)生的語言,又強(qiáng)化了立方根的概念,最后完成求值,完成解答。從中也是給學(xué)生滲透一種學(xué)習(xí)方法,強(qiáng)化讀題的重要性,要明確題意,才能求解。其實(shí),這也是通過這段時(shí)間聽指導(dǎo)老師陸春老師的課學(xué)到的,要感謝陸老師。
5、在講明中a的取值范圍時(shí),我是在得到立方根的性質(zhì):一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根,零的立方根是零之后,讓學(xué)生思考a的取值范圍是什么,學(xué)生根據(jù)性質(zhì)正數(shù)、負(fù)數(shù)和0都有立方根,自然而然的就可以得到a的取值范圍,這樣很自然,學(xué)生也很容易理解,有一種水到渠成的感覺。
三、不足之處
1、教學(xué)中我總是以我的意識(shí)為轉(zhuǎn)移,課堂上按著我設(shè)計(jì)好的路線行駛,不能發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,不能把學(xué)生放出去,總是攥在自己的手里,我覺得學(xué)生應(yīng)該會(huì)的、容易的就少講,覺得不好理解的就多講,應(yīng)該根據(jù)學(xué)生的實(shí)際情況來定,把學(xué)生放出去,掌控好他們,最后再收回來。
2、教學(xué)中我受自己的意識(shí)影響,缺少原理性的東西,缺少對(duì)定義的挖掘,有些地方?jīng)]有抓住定義去進(jìn)一步解釋,缺少讓學(xué)生思考,去想的時(shí)間過程,讓學(xué)生知道本質(zhì)的東西有利于學(xué)生理解(我總覺得學(xué)生都會(huì)了就不用過多解釋了)。
3、教學(xué)中沒有把平方根的相關(guān)知識(shí)列出來,所以對(duì)于立方根和平方根的類比就不顯得充分、鮮明,我都是用語言來表述的,以后再上這節(jié)課時(shí)應(yīng)該在黑板上寫出來,會(huì)更好。
4、在教學(xué)中,對(duì)立方和開立方這一對(duì)互逆運(yùn)算體現(xiàn)的不夠,應(yīng)該讓學(xué)生進(jìn)一步體會(huì)立方運(yùn)算的結(jié)果是冪,開立方的結(jié)果是立方根。
四、疑惑的地方
教學(xué)中,我一直認(rèn)為,學(xué)生都會(huì)的東西,就沒有必要再去解釋、說明、講解,我覺得學(xué)生都會(huì)的地方還要去給解釋,再講,是在浪費(fèi)時(shí)間,學(xué)生也不想再聽(這是學(xué)生的意見)。
五、感受與思考:
1、學(xué)生預(yù)習(xí)習(xí)慣的養(yǎng)成,學(xué)習(xí)方法的培育,是培養(yǎng)自學(xué)能力的有效途徑。
2、學(xué)生理解的效果,取決于教師根據(jù)學(xué)生的經(jīng)驗(yàn),作出的恰當(dāng)?shù)膯l(fā)引導(dǎo),以及學(xué)生參與學(xué)習(xí)過程的程度,包含主動(dòng)性、過程性。
3、課堂難度和速度往往以中游學(xué)生為標(biāo)尺,如何培養(yǎng)優(yōu)生、幫助后進(jìn)生?怎樣去操作?特別是后進(jìn)生人群數(shù)量龐大,而且又要面對(duì)考試評(píng)比,課堂應(yīng)當(dāng)怎么辦?這是一個(gè)值得思考的問題
《立方根》教學(xué)設(shè)計(jì) 篇7
這一節(jié)課,是依據(jù)蘇科版新課程實(shí)驗(yàn)教材,八年級(jí)數(shù)學(xué)上冊(cè)第四章實(shí)數(shù),第二節(jié)《立方根》的內(nèi)容設(shè)計(jì)的。本節(jié)內(nèi)容承接了《平方根》的教材編排模式,與平方根一節(jié)一起給學(xué)生建立‘開方’的運(yùn)算模式,為下一節(jié)《實(shí)數(shù)》概念的建立和運(yùn)算模式的建立打基礎(chǔ)。所以,說本節(jié)課具有‘承前啟后’的作用,應(yīng)當(dāng)是合適的。
說課標(biāo)
數(shù)學(xué)課程標(biāo)準(zhǔn)對(duì)“實(shí)數(shù)”一章中關(guān)于本節(jié)知識(shí)的要求是:①了解平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、立方根。②了解立方與乘方會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的平方根,會(huì)用立方運(yùn)算求某些數(shù)的立方根,會(huì)用計(jì)算器求平方根和立方根。因而,本節(jié)確立的教學(xué)目標(biāo),在知識(shí)技能方面要求了解立方根的概念,用三次根號(hào)表示一個(gè)數(shù)的立方根。方法方面用類比法學(xué)習(xí)立方根及開立方運(yùn)算。情態(tài)價(jià)值方面則發(fā)展求同存異思維。
。ㄒ唬⿲W(xué)習(xí)目標(biāo):
1 、知識(shí)目標(biāo):
。1)理解并掌握立方根的概念,會(huì)用符號(hào)表示一個(gè)數(shù)的立方根。
。2)能用立方運(yùn)算求某些數(shù)的立方根,了解開立方與立方互為逆運(yùn)算。
(3)理解并掌握正數(shù)、負(fù)數(shù)、0的立方根的特點(diǎn)。
(4)區(qū)分立方根與平方根的不同。
2 、能力目標(biāo):
。1)通過學(xué)習(xí)立方根,培養(yǎng)學(xué)生理解概念并用定義解題的能力。
(2)通過用類比的方法探尋出立方根的概念、表示方法及運(yùn)算。
。3)通過經(jīng)歷探索和合作交流,歸納總結(jié)出平方根與立方根的異同。
。ǘ⿲W(xué)習(xí)重、難點(diǎn):
1、學(xué)習(xí)重點(diǎn):立方根的概念和求法。
2、學(xué)習(xí)難點(diǎn):理解立方根的性質(zhì);比較立方根與平方根的.異同。
說教學(xué)法分析
當(dāng)前高效課堂的主流就是培養(yǎng)學(xué)生的能力,使學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)解決實(shí)際問題。在學(xué)習(xí)過程中讓學(xué)生自主探索、觀察猜測(cè)、合作交流、分析推理、歸納總結(jié),充分體現(xiàn)學(xué)生的主體地位,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。
說教學(xué)重點(diǎn)
了解立方根的概念性質(zhì),會(huì)用概念解題。
說教學(xué)難點(diǎn)
應(yīng)用時(shí)的符號(hào)問題
教具準(zhǔn)備
鑒于需要類比教學(xué),容量大,因此采用多媒體課件教學(xué)
說教學(xué)流程
在教學(xué)過程中,我采用班班通輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
1、創(chuàng)設(shè)情境復(fù)舊導(dǎo)新
在課堂的引入上采用了一個(gè)求立方根的實(shí)際應(yīng)用問題,已知體積,求正方體的棱長(zhǎng)。由實(shí)際應(yīng)用問題引入學(xué)生易于接受。體現(xiàn)了數(shù)學(xué)源于生活。
再對(duì)已學(xué)過的相似運(yùn)算---平方根進(jìn)行復(fù)習(xí),為接下來與立方根進(jìn)行比較打下基礎(chǔ)。初步體會(huì)類比思想
2、啟發(fā)誘導(dǎo)探索新知
首先出示學(xué)習(xí)目標(biāo),讓學(xué)生明白本節(jié)課我要學(xué)什么,怎樣學(xué),達(dá)到什么要求。接下來結(jié)合導(dǎo)學(xué)案和教材,導(dǎo)讀自學(xué),自主探究。設(shè)計(jì)意圖:學(xué)生自學(xué)教材通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí)。
最后,我通過三個(gè)活動(dòng)將新知細(xì)化
活動(dòng)一:立方根的概念
設(shè)計(jì)意圖:使學(xué)生學(xué)會(huì)“文字語言”與“符號(hào)語言”這兩種表達(dá)方式。整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問題。
活動(dòng)二:立方根的性質(zhì)
這是本節(jié)的一個(gè)難點(diǎn)。考慮到這個(gè)結(jié)論與平方根的相應(yīng)結(jié)論不同,采用了先啟發(fā)學(xué)生思考的辦法,安排一個(gè)口答題,求一些具體數(shù)的立方根,在學(xué)生經(jīng)過觀察、思考并有了一些感性認(rèn)識(shí)之后,自己總結(jié)出有關(guān)正數(shù)、0、負(fù)數(shù)立方根的特點(diǎn),其后,通過合作探究學(xué)生歸納總結(jié)出平方根與立方根的異同。強(qiáng)調(diào):用根號(hào)式子表示立方根時(shí),根指數(shù)不能省略;以及立方根的唯一性。
3、引導(dǎo)探究延伸新知
活動(dòng)三:求一個(gè)數(shù)的立方根
。1)表示各數(shù)的立方根(定義的理解)
。2)求下列各式的值(概念、性質(zhì)、公式的綜合運(yùn)用)
設(shè)計(jì)意圖:組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果。使學(xué)生從中體會(huì)到從特殊到一般的數(shù)學(xué)思想,同時(shí),讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。
4、歸納小結(jié)鞏固新知
設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。
5、課堂達(dá)標(biāo)拓展延伸
設(shè)計(jì)意圖:此環(huán)節(jié)體現(xiàn)出課堂的價(jià)值不僅是讓學(xué)生學(xué)會(huì)知識(shí),檢驗(yàn)新知學(xué)習(xí)效果,而且培養(yǎng)學(xué)習(xí)能力,提升素質(zhì),達(dá)到了兵教兵,兵強(qiáng)兵的目的。
說板書設(shè)計(jì)
立方根
1、一個(gè)數(shù)a的立方根可以表示為:
讀作:三次根號(hào)a,其中a是被開方數(shù),3是根指數(shù),不能省略。
2、立方根的性質(zhì):
(1)正數(shù)的立方根是正數(shù);
。2)負(fù)數(shù)的立方根是負(fù)數(shù);
。3)0的立方根是0。
3、比較立方根與平方根的異同
4、黑板右邊學(xué)生板演、展示。
《立方根》教學(xué)設(shè)計(jì) 篇8
一、教材分析
(一 )、教材的地位和作用,本章可以看成是以后學(xué)習(xí)代數(shù)內(nèi)容的起始章,是學(xué)習(xí)二次根式、一元二次方程以及解三角形的基礎(chǔ),因此在中學(xué)數(shù)學(xué)教學(xué)中占有很重要的地位。通過本章的學(xué)習(xí),學(xué)生對(duì)數(shù)的認(rèn)識(shí)就由有理數(shù)擴(kuò)大到實(shí)數(shù),而無理數(shù)的概念正是由數(shù)的平方根和立方根引入的。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。通過本節(jié)課的學(xué)習(xí),學(xué)生可以更深入的了解無理數(shù),為后面學(xué)習(xí)實(shí)數(shù)奠定基礎(chǔ)。
。ǘ、學(xué)情分析,學(xué)生已經(jīng)比較熟練的掌握了平方根的概念和性質(zhì),能用根號(hào)表示一個(gè)數(shù)的平方根,學(xué)生的學(xué)習(xí)態(tài)度比較端正,個(gè)性活潑,思維比較活躍,對(duì)一些數(shù)學(xué)問題已具有自主探究的能力,但班上的這些學(xué)生結(jié)構(gòu)參差不齊,個(gè)體差異比較明顯,部分學(xué)生的思維已由形象思維向抽象思維轉(zhuǎn)化,但形象思維仍占主導(dǎo)地位。
。ㄈ、根據(jù)教材要求確定本節(jié)課的教學(xué)目標(biāo)為:
①了解立方根和開立方的概念;
、谡莆樟⒎礁男再|(zhì);
、蹠(huì)用根號(hào)表示一個(gè)數(shù)的立方根;
④會(huì)求一個(gè)數(shù)的立方根。
⑤通過用類比的方法探尋出立方根的運(yùn)算及表示方法,并能自己總結(jié)出平方根與立方根的異同。
、尥ㄟ^學(xué)習(xí)立方根,培養(yǎng)學(xué)生理解概念并用定義解題的能力。
、甙l(fā)展學(xué)生的求同存異思維,使他們能在復(fù)雜的環(huán)境中明辨是非,并做出正確的處理。
、嗤ㄟ^探究活動(dòng),鍛煉學(xué)生克服困難的意志,建立自信心,提高學(xué)習(xí)熱情。
(四)、教學(xué)重難點(diǎn) 根據(jù)學(xué)生的認(rèn)識(shí)發(fā)展水平和教材特點(diǎn),結(jié)合本班學(xué)生的實(shí)際情況在教學(xué)中我認(rèn)為教學(xué)的重點(diǎn)是立方根的概念及性質(zhì);本節(jié)課的教學(xué)難點(diǎn)是:求一個(gè)數(shù)的立方根。
二、教法學(xué)法分析
(一)教法分析 根據(jù)學(xué)生的年齡特征和心理發(fā)展水平及教學(xué)內(nèi)容的特點(diǎn),在教學(xué)的方法上,我以探究式體驗(yàn)教學(xué)為主,為學(xué)生創(chuàng)造一個(gè)良好的學(xué)習(xí)情景,通過學(xué)生的自主探究了解知識(shí),加深理解。同時(shí)考慮到學(xué)生的個(gè)體差異,在各個(gè)環(huán)節(jié)進(jìn)行幫輔式教學(xué)。
。ǘ⿲W(xué)法分析 從學(xué)生已有的認(rèn)知水平、認(rèn)識(shí)能力出發(fā),用類比及引導(dǎo)探索法由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流得出立方根的定義,將定義的應(yīng)用融入到探究活動(dòng)中。使學(xué)生由學(xué)會(huì),變得會(huì)學(xué)、樂學(xué)。通過啟發(fā)、疏導(dǎo)、點(diǎn)拔、評(píng)價(jià)的方法讓學(xué)生很輕松的接受新知識(shí)。
。ㄈ┙虒W(xué)手段 在教學(xué)中采用多媒體教學(xué),直觀展示立方根的表示方法,激發(fā)學(xué)生的學(xué)習(xí)欲望,增大教學(xué)容量,提高課堂教學(xué)效果。
三、教學(xué)過程分析
在教學(xué)過程中根據(jù)新課標(biāo)的要求,結(jié)合我班實(shí)際情況,制定了以下教學(xué)流程:創(chuàng)設(shè)情境復(fù)舊引新;啟發(fā)誘導(dǎo),探索新知;引導(dǎo)探究,延伸新知; 歸納小結(jié),深化新知;布置作業(yè),鞏固新知。
首先我們進(jìn)入第一個(gè)環(huán)節(jié),創(chuàng)設(shè)情景,復(fù)習(xí)舊知識(shí)引導(dǎo)新知識(shí)。新課標(biāo)要求學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)應(yīng)該在生動(dòng)的情景中學(xué)習(xí),享受學(xué)習(xí)數(shù)學(xué)的美,情景創(chuàng)設(shè)實(shí)際上是最重要的教學(xué)內(nèi)容之一,所以我在教學(xué)中設(shè)計(jì)了兩個(gè)問題,問題一的設(shè)計(jì)我改變了傳統(tǒng)的固定問題方式,給學(xué)生以思考的空間,充分體現(xiàn)了學(xué)生的主體意識(shí),使學(xué)生把學(xué)習(xí)知識(shí)的事情當(dāng)作自己?jiǎn)栴}的發(fā)現(xiàn),從而找到學(xué)習(xí)數(shù)學(xué)的成功感,消除學(xué)習(xí)新知識(shí)的畏懼心態(tài)。讓學(xué)生做一個(gè)容積為125立方厘米方體,此題對(duì)學(xué)生有一個(gè)計(jì)算過程,學(xué)生容易得出答案,根據(jù)計(jì)算結(jié)果做出棱長(zhǎng)為5厘米的正方體,老師對(duì)學(xué)生的制作給予肯定,給予鼓勵(lì),從熟悉的立體圖形引入立方根,提高學(xué)生學(xué)習(xí)的激情,激起他們的求知欲;然后提出下一個(gè)問題:做一個(gè)容積為50立方分米,高是底面直徑的4倍的圓柱體容器,那它的底面直徑是多少?怎么求?學(xué)生容易列出式子,出現(xiàn)了=≈15.92,學(xué)生在制作上出現(xiàn)了難題,學(xué)生百思不得其解。老師根據(jù)學(xué)生的焦急心情給予學(xué)生一個(gè)臺(tái)階,只要我們學(xué)習(xí)了這節(jié)課的內(nèi)容你們就會(huì)解決了。在此讓學(xué)生進(jìn)一步認(rèn)識(shí)這個(gè)等式中的值,就是已知冪是15.92,指數(shù)是3時(shí)求底數(shù)的值,讓學(xué)生明白它是立方運(yùn)算的一種逆運(yùn)算。從身邊熟悉的事物引入立方根的概念,說明學(xué)習(xí)立方根的意義,立方根可以用來解決我們身邊的很多實(shí)際問題。使學(xué)生產(chǎn)生了強(qiáng)烈的求知欲望,強(qiáng)勁的學(xué)習(xí)動(dòng)力。接著出示一個(gè)小練習(xí),為概念的引入作準(zhǔn)備并滲透從特殊到一般的規(guī)律。
2、然后啟發(fā)誘導(dǎo),探索新知是本節(jié)課的重點(diǎn)也是難點(diǎn),讓學(xué)生根據(jù)剛才列式以及平方根的定義試著給數(shù)的立方根下定義。在給立方根下定義時(shí),利用立方根與平方根的類比的方法,既有利于加深學(xué)生對(duì)立方根概念的理解,并讓學(xué)生了解開立方與立方互為逆運(yùn)算,弄清兩者的區(qū)別與聯(lián)系,讓學(xué)生把知識(shí)學(xué)得更好,又可以提高教學(xué)效益,節(jié)損教學(xué)時(shí)間。再出示練一練,讓學(xué)生用類比的方法求數(shù)的立方根,認(rèn)識(shí)求一個(gè)數(shù)的立方根的運(yùn)算與立方的聯(lián)系與區(qū)別,由易到難,由淺入深,層層遞進(jìn),注意訓(xùn)練學(xué)生用“∵”、“∴”的推理格式書寫,培養(yǎng)學(xué)生用概念進(jìn)行思維的訓(xùn)練,著眼于弄清立方根的概念和符號(hào)表示,在練習(xí)的過程中要求學(xué)生采用語言敘述和符號(hào)表示互相補(bǔ)充的方法書寫過程。強(qiáng)調(diào)指出根指數(shù)3,不能省略;接著根據(jù)立方根的意義填空,目的在于讓學(xué)生鞏固熟悉立方根的概念,讓學(xué)生在練習(xí)中發(fā)揮小組的集體力量討論完成表格,從而得出立方根的性質(zhì)。(在學(xué)生得出立方根的性質(zhì)有難度時(shí),教師可以從正數(shù)的立方根,0的立方根,負(fù)數(shù)的立方根三個(gè)方面給予提示);通過提示中偏下的學(xué)生也能完成表格,結(jié)合平方根讓學(xué)生對(duì)立方根有一個(gè)全新的認(rèn)識(shí),再通過做一做進(jìn)一步提高學(xué)生的計(jì)算能力,此題目相對(duì)復(fù)雜點(diǎn),題(2)中同時(shí)出現(xiàn)立方根和平方根,突出了立方根和平方根的對(duì)比,以利于弄清兩者的區(qū)別和聯(lián)系)。然后用一個(gè)挑戰(zhàn)自己的題目深化所學(xué)內(nèi)容,發(fā)展學(xué)生的抽象思維能力和歸納能力,馬上用體驗(yàn)一刻通過練習(xí),使學(xué)生熟悉并掌握剛才的兩條公式,提高解決問題的能力。
3、下一步,引導(dǎo)探究,延伸知識(shí) ,讓學(xué)生通過練習(xí)、觀察、探究,總結(jié)出互為相反數(shù)的兩個(gè)數(shù)a與-a的立方根的關(guān)系,培養(yǎng)學(xué)生的自己歸納能力和總結(jié)能力,通過他們的合作學(xué)習(xí),體會(huì)到獲得知識(shí)的`成功感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望,信心。
4、現(xiàn)在進(jìn)入到小結(jié)歸納,深化新知,我的理解是小結(jié)歸納不應(yīng)該是對(duì)知識(shí)的簡(jiǎn)單羅列,應(yīng)該充分發(fā)揮學(xué)生的主體作用,從學(xué)習(xí)的知識(shí)、方法體驗(yàn)上,三個(gè)方面進(jìn)行歸納,因此我設(shè)計(jì)了這么三個(gè)問題:通過本節(jié)課的學(xué)習(xí)你獲得了哪些知識(shí)? 通過本節(jié)課的學(xué)習(xí)你最大的體驗(yàn)是什么?通過本節(jié)課的學(xué)習(xí)你掌握了那些學(xué)習(xí)數(shù)學(xué)的方法?讓學(xué)生在明確掌握了重難點(diǎn)的同時(shí)消化本節(jié)課所學(xué)的內(nèi)容,總結(jié)出平方根與立方根的異同。
5、接下來就是布置作業(yè),鞏固新知,為了鞏固新知識(shí),作業(yè)設(shè)計(jì)分為必作題和選作題,必作題是對(duì)本節(jié)課所學(xué)內(nèi)容的反饋,選作題是本節(jié)課所學(xué)知識(shí)的延伸、拓展,注重知識(shí)的連貫性,設(shè)計(jì)題目學(xué)以制用,鞏固提高。
7、板書設(shè)計(jì),用來再現(xiàn)教學(xué)過程,突出教學(xué)重點(diǎn),加深學(xué)生對(duì)本節(jié)課知識(shí)的理解和掌握,對(duì)本節(jié)課的知識(shí)形成整體框架。
四、評(píng)價(jià)分析
我認(rèn)為上好一堂課的著眼點(diǎn)應(yīng)該放在引導(dǎo)學(xué)生如何獲得知識(shí)、探究知識(shí)上,讓學(xué)生加深對(duì)數(shù)學(xué)知識(shí)的理解,教師是教學(xué)過程的組織者和引導(dǎo)者,學(xué)生是學(xué)習(xí)的主人,由于學(xué)生的參差不齊老師要全盤關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),對(duì)教學(xué)中出現(xiàn)的突發(fā)事件;做到因勢(shì)利導(dǎo),隨機(jī)應(yīng)變。對(duì)于學(xué)生的評(píng)價(jià);做到反映性評(píng)價(jià)與反饋性評(píng)價(jià)相結(jié)合,促進(jìn)學(xué)生的自己評(píng)價(jià),把握評(píng)價(jià)的時(shí)機(jī),實(shí)施評(píng)價(jià)的主題和形式的多樣化,使課堂教學(xué)達(dá)到最佳狀態(tài)
本節(jié)內(nèi)容設(shè)計(jì)了兩課時(shí)完成,在第二課時(shí)學(xué)習(xí)用計(jì)算器求一個(gè)數(shù)的立方根及立方根在解方程中的運(yùn)用。我的說課結(jié)束,望各位老師指導(dǎo)。
《立方根》教學(xué)設(shè)計(jì) 篇9
一、說教材:
求數(shù)的平方根和立方根的運(yùn)算是數(shù)學(xué)的基本運(yùn)算之一,在根式運(yùn)算、解方程及幾何圖形解法等問題中經(jīng)常要用到。學(xué)習(xí)立方根的意義在于:
(1)它有著廣泛應(yīng)用,因?yàn)榭臻g形體都是三維的,關(guān)于有關(guān)體積的計(jì)算經(jīng)常涉及開立方。
。2)立方根是奇次方根的特例,就像平方根是偶次方的特例一樣,立方根對(duì)進(jìn)一步研究奇次方根的性質(zhì)具有典型意義。
二、說目標(biāo)
1、能說出開立方、立方根的定義,記住正數(shù)、零、負(fù)數(shù)的立方根的不同結(jié)論;能用符號(hào) 表示a的立方根,并指出被開方數(shù)、根指數(shù),會(huì)正確讀出符號(hào),知道開立方與立方互為逆運(yùn)算。
2、能依據(jù)立方根的定義求完全立方數(shù)的立方根。教學(xué)重點(diǎn)是:立方根相關(guān)概念的理解和求法。在教學(xué)中突出立方根與平方根的對(duì)比,弄清兩者的區(qū)別與聯(lián)系,這樣做既有利于鞏固平方根的概念,又便于加深對(duì)立方根的'理解。
三、說教學(xué)設(shè)想
在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。本節(jié)是新課內(nèi)容的學(xué)習(xí)。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境。
在課堂的引入上采用了一個(gè)求立方根的實(shí)際應(yīng)用問題,已知體積,求正方體的棱長(zhǎng)。由實(shí)際應(yīng)用問題是學(xué)生易于接受。再對(duì)已學(xué)過的相似運(yùn)算---平方根進(jìn)行復(fù)習(xí),為接下來與立方根進(jìn)行比較打下基礎(chǔ)。為培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,我為他們布置了問題,讓他們帶著問題看書。自己找出立方根的基本概念。關(guān)于立方根的個(gè)數(shù)的討論,是本節(jié)的一個(gè)難點(diǎn)?紤]到這個(gè)結(jié)論與平方根的相應(yīng)結(jié)論不同,采用了先啟發(fā)學(xué)生思考的辦法,用“想一想”提出有關(guān)正數(shù)、0、負(fù)數(shù)立方根個(gè)數(shù)的思考題,接著安排一個(gè)例題,求一些具體數(shù)的立方根,在學(xué)生經(jīng)過思考并有了一些感性認(rèn)識(shí)之后,自己總結(jié)出結(jié)論。其后,引導(dǎo)學(xué)生自己總結(jié)平方根與立方根的區(qū)別,強(qiáng)調(diào):用根號(hào)式子表示立方根時(shí),根指數(shù)不能省略;以及立方根的唯一性?紤]到如果教學(xué)計(jì)劃提前完成,我在練習(xí)卷之外,還準(zhǔn)備了一些易混淆的命題讓學(xué)生判斷、區(qū)分,鞏固所學(xué)內(nèi)容。
本節(jié)內(nèi)容設(shè)計(jì)了兩課時(shí)完成,在第二課時(shí)進(jìn)一步深入學(xué)習(xí)立方根在解方程,以及與平方根部分的綜合應(yīng)用。
《立方根》教學(xué)設(shè)計(jì) 篇10
一、教材分析
《立方根》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級(jí)(上)第二章《實(shí)數(shù)》第三節(jié)、本節(jié)內(nèi)容安排了1個(gè)學(xué)時(shí)完成、主要是通過對(duì)立方根與平方根的比較與歸類,探索立方根的概念、計(jì)算和簡(jiǎn)單性質(zhì)、因此,除了具體的知識(shí)技能(如知道一個(gè)數(shù)的立方根的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根,掌握立方根運(yùn)算,掌握求一個(gè)數(shù)的立方根的方法和技巧)外,還需要昂學(xué)生感受類比的思想方法,為今后的學(xué)習(xí)打下基礎(chǔ)、
二、學(xué)情分析
在學(xué)習(xí)了平方根概念的基礎(chǔ)上學(xué)習(xí)立方根的概念,學(xué)生比較容易接受,因此教學(xué)重點(diǎn)放在立方根具有唯一性(實(shí)數(shù)范圍內(nèi))的討論上、在學(xué)生對(duì)數(shù)的立方根概念及個(gè)數(shù)的唯一性有了一定理解的基礎(chǔ)上,再提出數(shù)的立方根與數(shù)的平方根有什么區(qū)別,學(xué)生就容易解決問題、
三、目標(biāo)分析
教學(xué)目標(biāo)
知識(shí)與技能目標(biāo)
1、了解立方根的概念,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根、
2、會(huì)用立方運(yùn)算求一個(gè)數(shù)的立方根,了解開立方與立方互為逆運(yùn)算、
3、了解立方根的性質(zhì)、
4、區(qū)分立方根與平方根的不同、
過程與方法目標(biāo)
1、經(jīng)歷對(duì)立方根的探究過程,在探究中學(xué)會(huì)解決立方根的一些基本方法和策略、
2、在學(xué)習(xí)了平方根的基礎(chǔ)上,學(xué)生經(jīng)歷用類比的方法學(xué)習(xí)立方根的有關(guān)知識(shí),領(lǐng)會(huì)類比思想、
3、通過對(duì)立方根性質(zhì)的探究,在探究中培養(yǎng)學(xué)生的逆向思維能力和分類討論的意識(shí)、
情感與態(tài)度目標(biāo):
1、在立方根概念、符號(hào)、運(yùn)算及性質(zhì)的探究過程中,培養(yǎng)學(xué)生聯(lián)系實(shí)際、善于觀察、勇于探索和勤于思考的精神、
2、學(xué)生通過對(duì)實(shí)際問題的解決,體會(huì)數(shù)學(xué)的實(shí)用價(jià)值、
教學(xué)重點(diǎn)
立方根的概念及計(jì)算、
教學(xué)難點(diǎn)
立方根的求法,立方根與平方根的聯(lián)系及區(qū)別、
四、教法學(xué)法
1、教學(xué)方法:類比法、
2、課前準(zhǔn)備:
教具:教材,軟件Microsoft PowerPoint 2002,電腦、
學(xué)具:教材,練習(xí)本、
五、教學(xué)過程
本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設(shè)問題情境;第二環(huán)節(jié):復(fù)習(xí)引入、類比學(xué)習(xí);第三環(huán)節(jié):初步探究;第四環(huán)節(jié):嘗試反饋,鞏固練習(xí);第五環(huán)節(jié):深入探究;第六環(huán)節(jié):課時(shí)小結(jié);探究與思考;第七環(huán)節(jié):作業(yè)布置及課外探究、
第一環(huán)節(jié):創(chuàng)設(shè)問題情境:
內(nèi)容:
某化工廠使用一種球形儲(chǔ)氣罐儲(chǔ)藏氣體,現(xiàn)在要造一個(gè)新的球形儲(chǔ)氣罐,如果它的體積是原來的8倍,那么它的半徑是原儲(chǔ)氣罐的多少倍?如果儲(chǔ)氣罐的體積是原來的4倍呢?
(球的體積公式為v=R,R為球的半徑)
提問:怎樣求出半徑R?
學(xué)完本節(jié)知識(shí)后,相信你會(huì)有一個(gè)滿意的答案、有關(guān)體積的.運(yùn)算和面積的運(yùn)算有類似之處,讓我們用上節(jié)課解決問題的方法來學(xué)習(xí)新知識(shí)、 433意圖:通過實(shí)際情境引入,讓學(xué)生感受新知學(xué)習(xí)的必要性,激發(fā)學(xué)生的求知欲望、
效果:在思考問題的同時(shí),學(xué)生既感受了數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)了學(xué)生的學(xué)習(xí)熱情,有很快將問題歸結(jié)為如何確定一個(gè)數(shù),它的立方等于4,從而順利引入新課、
第二環(huán)節(jié):復(fù)習(xí)引入、類比學(xué)習(xí)
內(nèi)容:
提問:(1)什么叫一個(gè)數(shù)a的平方根?如何用符號(hào)表示數(shù)a(a≥0)的平方根(2)正數(shù)的平方根有幾個(gè)?它們之間的關(guān)系是什么?負(fù)數(shù)有沒有平方根?0的平方根
是什么?
。3)平方和開平方運(yùn)算有何關(guān)系?
(4)算術(shù)平方根和平方根有何區(qū)別和聯(lián)系?
強(qiáng)調(diào):一個(gè)正數(shù)的平方根有兩個(gè),且互為相反數(shù);一個(gè)負(fù)數(shù)沒有平方根;0的平方根是0。(5)為了前面場(chǎng)景的問題中,需要引出一個(gè)新的運(yùn)算,你將如何定義這個(gè)新運(yùn)算?
1、一般地,如果一個(gè)數(shù)x的平方等于a,即x=a,那么這個(gè)數(shù)x就叫做a的平方根(也叫做二次方根)。
2、一般地,如果一個(gè)數(shù)x的立方等于a,即x=a,那么這個(gè)數(shù)x就叫做a的立方根(cube root,也叫做三次方根)、如:2是8的立方根,-3是-27的立方根,0是0的立方根、
意圖:學(xué)生通過回顧上節(jié)課的學(xué)習(xí)內(nèi)容,為進(jìn)一步研究立方根的概念及性質(zhì)做好鋪墊,同時(shí)
突出平方根與立方根的對(duì)比,以利于弄清兩者的區(qū)別和聯(lián)系、
效果:復(fù)習(xí)引入既復(fù)習(xí)了平方根的知識(shí),又利于學(xué)生類比學(xué)習(xí)法學(xué)習(xí)立方根知識(shí)。
第三環(huán)節(jié):初步探究
內(nèi)容:
1做一做:怎樣求下列括號(hào)內(nèi)的數(shù)?各題中已知什么數(shù)?求什么數(shù)?